Int. J. Appl. Comput. Math (2022) 8:245
https://doi.org/10.1007/s40819-022-01433-y

ORIGINAL PAPER

®

Check for
updates

A Detailed Study on a Tumor Model with Delayed Growth
of Pro-Tumor Macrophages

Kaushik Dehingia' - Kamyar Hosseini?3 . Soheil Salahshour* - D. Baleanu®%’

Accepted: 19 July 2022
© The Author(s), under exclusive licence to Springer Nature India Private Limited 2022

Abstract

This paper investigates a tumor-macrophages interaction model with a discrete-time delay in
the growth of pro-tumor M2 macrophages. The steady-state analysis of the governing model
is performed around the tumor dominant steady-state and the interior steady-state. It is found
that the tumor dominant steady-state is locally asymptotically stable under certain conditions,
and the stability of the interior steady-state is affected by the discrete-time delay; as a result,
the unstable system experiences a Hopf bifurcation and gets stabilized. Furthermore, the
transversality conditions for the existence of Hopf bifurcations are derived. Several graphical
representations in two and three-dimensional postures are given to examine the validity of
the results provided in the current study.
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Introduction

Nowadays, mathematical models have been widely used in epidemiology to address the
complexity of population dynamics [1, 2], viral-disease dynamics [3—8], and tumor-immune
dynamics [9, 10], etc. The mathematical models involved a system of differential equations
with ordinary or fractional derivatives and delay differential equations. In this study, a tumor-
immune macrophages model has been investigated using discrete-time delay in terms of the
growth of pro-tumor macrophages. Tumor cells evolve due to the uncontrolled growth of
abnormal cells. During the progression of tumor cells, several immune cells are responsible
for their different actions. Over the past few decades, researchers have been approached by
mathematical modeling using various models [11-15] to understand tumor-immune dynam-
ics better. Kirschner and Panetta [11] illustrated a mathematical model which describes the
dynamics of a growing tumor in the presence of immune effector cells and IL-2. The authors
also explored the effects of adoptive cellular immunotherapy on their model. Kolev et al.
[12] investigated a model of integro-differential bilinear equations that describes the early-
stage competition between single-cell cancer and the immune system. In [13], the authors
analyzed a mathematical model of the immune system and abnormal cells, including healthy
and unhealthy diet patterns. They observed that the immune system could inhibit and elim-
inate abnormal cells through three stages: the response stage, the interaction stage, and the
recovery stage. The authors of [14] developed a spatio-temporal mathematical model to
explain cancer dormancy in a moving boundary problem. A study carried out by Galindo
et al. [15] demonstrated the chaotic behavior of a three-dimensional cancer model. Letellier
et al. [16] analyzed a tumor growth model based on [17], where the author investigated the
chaotic dynamics of the considered model that is relevant to the realistic scenario. Song
et al. [18] proposed a mathematical tumor-immune interaction model to explore the action
of natural killer cells and CD8+ T cells in tumor suppression.

Recent studies [19, 20] proved that macrophages’ role in tumor evolution and progres-
sion is crucial. There are two types of macrophages with different tumor responses: M1
macrophages are called anti-tumor macrophages, and M2 macrophages are called pro-tumor
macrophages. Several works [21-24] have been relevant to tumor-macrophages interactions.
Through a modeling approach, Owen et al. [20] investigated the role of chemotaxis and
chemokine production as well as the efficacy of macrophages as vehicles for drug deliv-
ery to hypoxic tumor sites. A mathematical model has been proposed in [21] to compare
the responses of avascular tumor spheroids to two modes of action: either the macrophages
deliver an enzyme that activates an externally applied prodrug (bystander model), or they
deliver cytotoxic factors directly (local model). den Breems and Eftimie [22] described
interactions between tumor cells, M1 and M2 macrophages, and Thl and Th2 cells by
analyzing a mathematical model and investigating the role of the re-polarization between
M1 and M2 macrophages on tumor growth. In [23], the author discussed the activity of
tumor-associated macrophages, which can support the development of a potential anti-cancer
therapy. Byrne et al. [24] studied tumor-macrophages interactions in vivo and described
the role of macrophages in eliminating tumor cells. In 2020, Shu et al. [19] developed a
tumor-macrophages interaction model, which suggests that the activation of M1 and M2
macrophages and the transition between M1 and M2 macrophages are responsible for reduc-
ing tumor growth.

Many authors have used delay differential models to describe the tumor-immune dynam-
ics. Several research works [25-28] found that time delay plays a crucial role in the tumor
growth model. The authors used the time delay term in growing and stimulating cells, cellular
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interactions, cell progression, differentiation of cell populations, and activation of cell popula-
tions. Dong et al. [25] discussed a time-delayed tumor-immune model with two discrete-time
delays: the immune activation delay for effector cells and the activation delay for helper T
cells (HTCs). Their study revealed that the immune activation delay for HTCs can induce
heteroclinic cycles to connect the tumor-free and immune-control equilibriums. In [26], the
authors investigated a delayed mathematical tumor model and showed that the model exhibits
periodic oscillations and chaotic behavior, which indicate long-term tumor relapse. Dehingia
et al. [27] analyzed a time-delayed mathematical cancer model, showing the system under-
goes different states: stable state, Hopf bifurcations, periodic oscillations, and unstable states
concerning the system’s parameters. In [28], the authors investigated the chaotic behavior of
a discrete-time delay cancer model and described the system’s stability. Following the above
studies, a time-delayed tumor-macrophage interaction model, based on Shu et al. [19], is
investigated in the present study.

The rest of the paper is assembled as follows: In Sect. 2, the considered model is formu-
lated. The steady-state analysis and the analysis of Hopf bifurcation of the considered model
are investigated in Sect. 3 and Sect. 4, respectively. The analytical findings of the study have
been verified numerically in Sect. 5. Finally, a concluding remark has been made in Sect. 6.

The model

Shu et al. [19] already discussed the model formulation and the model’s behavior without
time delay. We introduce the discrete-time delay in activating pro-tumor M2 macrophages
as the time required to develop molecules in the M2 macrophages. Hence, our considered
model takes the form

dT
E =aT(1 —bT)— fTMy +gT M>,
dM,
7:elTMl—d1M1—"11‘414"”21‘42’ 1)
dM,
ar =eT(t —0)My(t —0) —doMy +ri My — raMs,

where T', M1, and M, are the population of tumor cells, anti-tumor M1 macrophages, and
pro-tumor M2 macrophages at any time ¢ > 0, respectively. Here, 6 is the discrete-time delay
factor added due to the growth delay of pro-tumor macrophages M2. The initial conditions
are T(0) = M;(0) = M»(0) = 10° cells.

By considering (x, y,z) = %, MAI/I(lO), MAZ'I(ZO)], t = ¢ T(0)¢, and new dimensionless
parameter set as
a S g dy
o = , = bT 0 , 8 = —, = —, = ,
T 0) B ) o n o 1 T 0) U2
_d _n _n e
Tar O T et P T et " e

we get the following non-dimensional form of the model (1) after replacing t by ¢,
d
. ax(1 — Bx) —dxy +nxz,
dt
dy

=L —xy — — + 7z, 2
or =Y TRy m vy Hn 2)
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% =&x(t —0)z(t — 0) — oz + Y1y — 122,
where x, y, and z are the population of tumor cells, anti-tumor M1 macrophages, and pro-
tumor M2 macrophages at any time ¢ > 0, respectively. The corresponding initial conditions
are x(w) = ¥1(w), y(®) = Y2(w), and z(®w) = Y3(w) such that v € [—60,0] and ¥y =
W (), Yo (w), ¥3(w)) € Cy where C is the Banach space of continuous functions y :
[—6,0] — R3and C, = { =@, v¥2,¥3) € C: ¢j(w) > Ofor allw € [-0,0]and j =
1,2,3}.

Steady-State Analysis

The steady-states of the system (2) with delay & # 0 are the same as the steady-states of the
system (2) without delay 6 = 0. Steady-states of the system (2) have been reported in [19]
as

i. Trivial steady-state: Eo(0, 0, 0),

ii. Tumor dominant steady-state: E (% 0, O), and
iii. Interior or co-axial steady-state: E*(x*, y*, z%),

where

. a(l — Bx*)ys
S Syt — = 1)’
« ol = Bx") (1 +y1 —x¥)
Syt = — 1)

and x™* will be the positive root of the following quadratic equation

Ex? — (Epy +EY1 + o+ y2)x + (i pto + i ya + payr) = 0. 3)

Clearly, E* exists only if y* > 0, z* > 0, and 1 + y1 — 5% <x*<ui+y <+

The local stability analysis around the steady-states of the system (2) without delay (8 = 0)
has been reported in Shu et al. [19] as shown in Table 1.

Table 1 The steady-states of the system and conditions for their stability

Steady-state Nature of the Stability conditions
stability

Ey always unstable

Eq locally asymp- £ < (% +up + y2>/3 and % —u1—v1 <0
totically
stable
E* locally asymp- x* < % and
totically . . . N
stable (aﬂx* 8y V;—’)[aﬂx*(yf— + )’;—y) +x*(8y* — gnz*)] _

ax*(1 —ﬂx*)(éyi—f;* + yé—i*) >0
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Now, we will discuss the effect of delay on the stability of the system (2). Itis evident that if
E* exists, then E| is unstable. So, we will investigate the stability of only the interior steady-
state E* in the presence of the time delay factor. Accordingly, we compute the characteristic
equation corresponding to the steady-state E* as follows

det(\l — P — Qe™) =0, )

where [ is the identity matrix of order 3 and

o — 2afx* — 8y* + nz* —8x* nx*
P = y* —pr—yon :
0 V1 —M2 =72
000
Q=] 000
é—z* 0 %—X*
Since (x*, y*, z*) satisfy the system (2), hence we get the relation afx™ + §y* = o + nz*
and x* — pu; —y1 = —yi—i. Hence, the corresponding characteristic Eq. (4) becomes
334 p1a% + pah+ py+ e 02g1 + q2h+q3) = 0, 5)
where

*

V2
pr=afx*+ur+tyr+ =,
y

*

Y2z
P = 0!/3)6*<M2 MRChi ) +(u2 +12)

*

+8y"x™ — yi1y2,

¥z
y

*

»z*
P3 = (U2 +y2) <7aﬂX* + SX*y*> —afyiyex® — yinx*y”,

q1 = —&x¥,

*
g = —§x*<y2—z +afx* + nz*),
y*
— n* yaz*
q3 = —“;‘x*(y—*aﬁx* +8x*y* + z*( = 8)/2)).
Now, setting 1 = i¢ in (5) (where ¢ is positive) and separating real and imaginary parts
results in

¢* — p2¢ = dcos(@0) — (g3 — q19”)sin(¢0), ©6)
P19” = p3 = (43 — 419%)cos($9) + 2sin(¢0). )
By squaring and adding both sides of the above Eqgs. (6) and (7), we get

2 2 2
(@ = p20)” + (P19” = p3)" = (a3 — 014°) " + 439" ®)
Equation (8) can be re-written as
0+ 19" + Ma¢? + T3 = 0, ©)

where
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M = pi —2p2 — 4i,
My = pj — 45 — 2p1p3 + 24193,
M3 = pj —q3 = (p3+43) (3 — 43).

It is easy to observe that Eq. (9) has a unique positive root (say ¢o) if I[13 = p% — q32 =
(p3 +g3)(p3 —q3) < 0. Hence, the characteristic Eq. (5) has a pair of purely imaginary
roots of the form +i¢y.

Eliminating cos(¢6) from Egs. (6) and (7), we get
(q10% — 43) (9> — p20b) + 020 (P19* — p3)

sin(¢0) =
(a3 — 0192)” + 432

Then, 6. is given by 6, = %arcsin[
0,1,...

(611¢02*q3)(¢03*P2¢0)+(112¢0)(P1¢02*p3):| I S
(613—f1|¢02)2+q§¢02 o’

Analysis of Hopf Bifurcation

To establish the condition of Hopf bifurcation of the system (2), we must prove the transver-
sality condition
d(Rex)
do

which indicates that there exists at least one eigenvalue with a positive real part for 6 >
6.. Basically, we are interested in purely complex roots A = i¢g of Eq. (5) as it implies
[P(igp)| = |Q(igp)| and this defines the possible values of ¢o. Also, we aim to observe the
direction of motion of A when 6, is varied. For this purpose, we need to find

. [d(Red) . dr\™!
Q =ssign =sign| Re . (10)
dbe |i—igy do .
A=igo

On differentiating (5) with respect to 8, we find

|0:9L. >0,

di
(322 +2p1h+ p2) + e Qqih+q2) — 0% (2% + g2k +g3) | 20,
c

= re % (127 + ah+q3) s

. . 2)3+p122— 22— 0,
which leads to = si n[Re( PIL P34 4L 43 T .
g 203t puZepitps) T @i args)  * ) Ly
By inserting A = i¢p into the above expressions, we get Q =

1 sign[2¢8+¢8(P%—sz—q%)+(§1§—17§)].
# 3$3+(a3—q193)
This, if p% —2pr — q12 > 0 and q32 - p% > (, then the transversality conditions
d(Rer)
do
holds. Hence, the system undergoes a Hopf bifurcation at time delay & = 6.. Moreover, the

stability of the system may change from unstable to stable or stable to unstable via a Hopf
bifurcation.

lo=6.> 0,
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Numerical Resolution

In this section, we will present some numerical simulations of the system (2), which will
help to understand the analytical results in a better way. The MATLAB solver DDE-23
is formally used for numerical simulations of the model. We choose a parameter set as
a =0.5658=0.002,8 =2,n=0.1, uy =02, up =0.2,& = 1.05, y; = 0.05, and
y2 = 0.04 that have been taken from [19]. We will vary the time delay (6 # 0) to observe its
effect on the system (2). For the above parameter set, there exist three biologically feasible
steady-states Eg = (0, 0,0), E; = (500, 0, 0), and E* = (0.194, 0.304, 0.422). 1t is found
that the steady-states Eg and E are unstable. To investigate the effects of time delay on the
system, we vary the value of 6. The stability of the system around E* for different values of
discrete-time delay 6 is shown below.

Figure 1 indicates that for time delay, & = 0.0325; all the three cells co-exist. As there
is a small-time lag in the growth process of pro-tumor M2 macrophages, which indicates
that the fast proliferation of tumor cells and hence the anti-tumor M1 macrophages cannot
stabilize the tumor cells’ growth. It suggests that the system is not stable around the interior
steady-state E*.

Figure 2 shows that for time delay, & = 0.1; all the three cells co-exist and due to the
increase of time delay in the growth process of pro-tumor M2 macrophages, the proliferation
of tumor cells is also negatively affected. Hence, the anti-tumor M 1 macrophages can compete
with tumor cells, and the system shows periodic oscillations, which indicates that the system
has limit cycle solutions around the interior steady-state E*.

Figure 3 demonstrates that for time delay, & = 0.205; all the three cells co-exist and
compete. At this value of time delay, the system undergoes a Hopf bifurcation, and the
system switches its stability from unstable to stable position around the interior steady state
E*.

3 3
3
22 g
8 5
5 2
£ 8
21 E 1
0 o & N ) |
0 1000 2000 3000 0 1000 2000 3000
Time (t) Time (t)
4
©
‘:??2 J‘:Elz
8 8
g, l I E
= I l g 0 0
0 AN AN 0 1 2 2
0 1000 2000 3000 3 4
Tumor cells M1 macrophages

Fig. 1 Time series evolution curve and 3D plot of the system for the initial values (2, 0.2, 0.4) with time delay
6 = 0.0325
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o - N w

1000 2000 3000 0 1000 2000 3000
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0
1000 2000 3000 1 2 32 1
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o

Fig. 2 Time series evolution curve and 3D plot of the system for the initial values (2, 0.2, 0.4) with time delay
0 =0.1

3 2
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Fig. 3 Time series evolution curve and 3D plot of the system for the initial values (2, 0.2, 0.4) with time delay
6 = 0.205
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Fig. 4 Time series evolution curve and 3D plot of the system for the initial values (2, 0.2, 0.4) with time delay
6=>5

Figure 4 indicates that for time delay 6 = 5, all the three cells co-exist, and due to
significant delay in the growth of pro-tumor M2 macrophages, anti-tumor M2 macrophages
can suppress the tumor growth, and the system gets stabilized around E*.

Conclusion

This study presented a modified delay differential model that describes the tumor-
macrophages interaction. The steady-state analysis demonstrated that the time delay in
the growth of M2 macrophages, which is a pro-tumor stage, changes the system’s stabil-
ity around the interior steady-state. Because of the slight delay in developing pro-tumor M2
macrophages, the anti-tumor M1 macrophages cannot control the growth of fast proliferating
tumor cells; as a result, the system undergoes an unstable state. This suggest that the pro-
tumor macrophages help in proliferation of tumor cells. However, by increasing the value of
time delay in the growth of pro-tumor M2 macrophages, the system changes its stability from
limit cycle solutions to stable nature via a Hopf bifurcation, which suggests that an increase
in the time delay in the growth of pro-tumor M2 macrophages also negatively affects the
growth of tumor cells and the anti-tumor M1 macrophages able to suppress tumor growth. In
this paper, we have found a new result: the considered delay factor in the growth of pro-tumor
macrophages changes the systems’ stability from unstable to stable via a Hopf bifurcation.
Therefore, this new finding suggests that using the specified drugs such that the growth of
pro-tumor M2 macrophages is slowed down can be a successful treatment for cancer man-
agement, which can be studied in the future. However, a clinical investigation is also needed
to claim this new finding. Furthermore, in this study, we have not discussed the length of
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discrete-time delay and direction and stability of Hopf bifurcation; this will be carried out in
our future research.
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