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A new generalized KdV equation, describing the motions of long waves in shallow water
under the gravity field, is considered in this paper. By adopting a series of well-organized
methods, the Backlund transformation, the bilinear form and diverse wave structures of
the governing model are formally extracted. The exact solutions listed in this paper are
categorized as lump-type, complexiton, and soliton solutions. To exhibit the physical
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mechanism of the obtained solutions, several graphical illustrations are given for partic-
ular choices of the involved parameters. As a direct consequence, diverse wave structures
given in this paper enrich the studies on the KdV-type equations.

Keywords: New generalized KdV equation; well-organized methods; Backlund transfor-
mation; bilinear form; lump-type; complexiton; and soliton solutions.

PACS numbers: 02.30.Jr, 04.20.Jb

1. Introduction

Partial differential equations (PDEs) emerge in a wide variety of scientific fields
and are capable tools for modeling many phenomena in optical fibers, ion-acoustic
waves, and water waves. One of the most fundamental goals in much of today’s
research is searching for exact solutions to PDEs. Such a goal is crucial because
exact solutions enable researchers to achieve valuable information and more insight
into the phenomena under study. Nowadays, with the advancement of symbolic
packages, several effective methods to find out exact solutions of PDEs such as the
Kudryashov method,! # the exp, method,”® and the modified Jacobi method® 12
have been established. All of these show the importance of finding exact solutions
to PDEs and their dynamical analysis.

Researchers are faced with a variety of exact solutions, such as lump, com-
plexiton, and soliton solutions. Each of these types of exact solutions has its def-
inition and those interested can refer to the papers'330 for more information. In
the last few decades, such types of exact solutions have been the key subject of
a lot of studies. For example, Sulaiman et al.?> obtained lump solutions of a non-
linear PDE in (3 4 1)-dimensions using a test function. Zhou et al. in Ref. 26
applied an ansatz to derive lump solutions of a 2D Boussinesq-type equation. The
authors of Ref. 27 found complexiton solutions of the KdV equation using the Hirota
method. In a study conducted by Hosseini et al.,® the Hirota method was used
to retrieve complexiton solutions of a Hirota equation. Wazwaz?® obtained solitons
of the KdV equations using the simplified Hirota method. Recently, the author of
Ref. 30 adopted the simplified Hirota method to acquire solitons of the sinh-Gordon
equations.

The main goal of this paper is to consider the following new generalized KdV
equation describing the motions of long waves in shallow water under the gravity
field

ou  Ou u ou 0%u

— 4+ — +15u—— +1
8t+8x5+ 5u8x3+5

20u  Ou Ou
and derive its lump-type, complexiton, and soliton solutions. For those interested,
the (2 + 1)-dimensional version of Eq. (1) was formally proposed by Sun et al. in
Ref. 31. It is noteworthy that Lii et al.3? obtained lump and interaction solutions of
(2 + 1)-dimensional generalized (2DG) KdV equation using the Hirota method. In
another research, Liu® used an ansatz to derive interaction solutions of the 2DG
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KdV equation. Very recently, Yusuf and Sulaiman in Ref. 34 retrieved lump-periodic
and other exact solutions of the 2DG KdV equation by adopting various methods.

This paper is organized as follows. In Sec. 2, by considering the model, its
Backlund transformation and bilinear form are derived. In Sec. 3, by applying sev-
eral well-established methods, diverse wave structures of the model, categorized as
lump-type, complexiton, and soliton solutions, are formally extracted. Besides, to
exhibit the physical mechanism of the obtained solutions, diverse graphical illus-
trations are taken in Sec. 3 for particular choices of the involved parameters. In the
last section, a full discussion of the results is provided.

2. New Generalized KdV Equation: Its Backlund
Transformation and Bilinear Form

To arrive at the Backlund transformation of the model, the authors utilize the
truncated Painlevé expansion (TPE).?*37 Owing to the TPE, the following solution
to Eq. (1) is considered:
U U
u = (b—g + El + us. (2)
In the above equation, us satisfies the model, and ug and u; are established later.
Setting Eq. (2) in Eq. (1) and considering the coefficient of ¢~7 to zero gives

5 3
—T720uq (gi’) — 540u3 (gi’) — 90u8% =0,

which its solution leads to

9\"
=—-2(=— .
" (ax)
After taking ug = —2(2—?)2 and us = 0, and considering the coefficient of =% to
zero, we derive
8¢\’ 0%¢ 9\’
360 =—— | == +180 — ] =0.
<3x> 0x? 10 Ox
From the above equation, u; is gained as
0%
U1 = 2@
Now, ug = 72(%)2, up = 2327‘5, and us = 0 result in
2¢ 2 ‘92¢ 21
u:72<8w) +2612 728 H(QS)

o ¢ 7 da?
It is worth mentioning that the new generalized KdV equation can be expressed in
the operator form as

(DyDy + DDy + DD, +DE)¢- ¢ = 0.
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The corresponding bilinear form of the above operator form is in the form

2(¢¢xt - ¢x¢t) + 2(¢¢xy - ¢x¢y) + 2(¢¢x2 - ¢x¢z) + 2¢¢xx;cacxx

3. New Generalized KdV Equation: Its Lump-Type,
Complexiton, and Soliton Solutions

In this section, through considering several well-designed methods, diverse wave
structures of the model, categorized as lump-type, complexiton, and soliton solu-
tions, are formally extracted. Besides, to exhibit the physical mechanism of the
obtained solutions, a number of graphical illustrations are taken for particular
choices of the involved parameters.

3.1. Lump-type solution of the model

To retrieve the lump-type solution of the model, an ansatz is adopted as follows:

¢ = (a1 + asy + asz + ast + as)* + (agx + ary + agz + agt + a1g)® +ay, (4)
where a;, i = 1,2,...,11 are derived later. By inserting Eq. (4) into Eq. (3) and
arranging the terms, we will achieve a nonlinear algebraic system whose solution
leads to

az = —a3z — a4, a7 = —as — ag.

Now, the following lump-type solution to the model is gained:

2
1
o o2 In(0)

02

where
¢ = (a1x — (a3 + as)y + azz + ast + as)?
+ (agz — (ag + ag)y + agz + agt + a19)? + a11.

The above lump-type solution for a1 =1, a3 =1, a4 =1, a5 =1, ag =1, ag = —1,

ag=2,a10=1,a11 =1,y =1, and ¢t = 0 can be written as

B 8 B 24z — 2)?
etz —124 (2 —2)24+1 (z+z—1)24 (2 —2)2+1)2

The physical mechanism of the above rational function which is a lump-type wave
has been represented in Fig. 1.
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Fig. 1. (Color online) Lump-type solution for a1 =1, a3 =1, a4 =1, a5 =1, ag = 1, ag = —1,

ag=2,a10=1,a;1=1,y=1,and t =0.
3.2. Complexiton solution of the model
To find the complexiton solution of the model, we first introduce

a = ai + taz,

b

by + ibs,

c=c1 +ico,
w = wy + twa,

mt—l—xy—i—xz—i—acG.

p

By considering the above assumptions and the following equations:

a system is generated as follows:
Ga?aQ — ZOafag + 6a1ag 4+ a1bs + a1co + ajws + asby + asey + aswy = 0,
— 15a1a2 + 15a1a2 — ag 4+ a1by + a1c1 + agwy — agby — ascy — aswo = 0,
—Ga?aQ + ZOafag — 6a1ag —ai1by —aijco — ajwg — agby — ase; — aswy = 0,
— 15a1a2 + 15a1a2 — a2 + a1b1 + a1c1 + aqwy — asby — ascy — aswe = 0.
The above system can be solved to derive w; and ws as
wy = —a} + 10a3a3 — baay — by — ¢y,
wy = —bajay + 10ata3 — aj — by — co.
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Fig. 2. (Color online) Complexiton solution for a1 = —1, by = —4.95, ¢c1 = =2, a2 = 1, by =

—0.75, c2 = =3,y =1, and t = 0.

The unknown a2 is obtained by adopting the following formula:

p(2ia2, 2ib2, 2i82, 2iw2)
p(2a1, 2b1, 201, 211)1)

a12 = —

as

—64a$ — 4(—batas + 10a2a3 — a3 — by — c2)ag — 4azby — dazcs
64a8 + 2(—2a3 + 20a3a3 — 10aja3 — 2by — 2c1)ay + 4aiby + 4ajer”

a12 =

Now, the complexiton solution to the model is acquired as

2
1
U= 288—25@’ ¢ =1+ 2e" cos(ta) + ajpe?’t,

where

Y1 = a1 + by + c12 + wit,
Yo = agx + boy + c2z + wot,
wyp = —a‘;’ + IOai’ag — 5a1a3 — by —cq,
We = —5a‘11a2 + lOafag’ — ag — by — ca,

—64a$ — 4(—5atay + 10a3a3 — a3 — by — c2)ag — 4asby — dages
64a$ + 2(—2af + 20a3a3 — 10a1a3 — 2by — 2¢1)ay + 4arby + 4arcr

a12 =

The physical mechanism of the above complexiton which is a combination of expo-
nential and trigonometric waves has been shown in Fig. 2 for a; = —1, by = —4.95,

c1=-2,a0=1b=-0.75,c0=-3,y=1,and t =0.
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3.3. Soliton solutions of the model

To construct soliton solutions of the model, the nonlinear terms of Eq. (1) are first
removed. This yields

ou  0°u  Ou  Ou

at+%+afy+%—0. (5)

By assuming the solution of Eq. (5) as
u = eﬁi, % = a;x + by + ¢iz — wit,
we will obtain
(a2 + by + ¢; — wy)eti®tbivteiz-wit —
From the above equation, the dispersion relation w; is found as
w; :a?—l—bi—i—ci.
Consequently, we can introduce the following phase variables:
Vi = a;x + by + ciz — (a +b; +ci)t, i=1,2.

Now, the following ansatz:

2
"= R8 ln(¢) ¢ =14 ea1x+b1y+clz—(a?+b1+cl)t
8,1:2 ) )
is inserted into the new generalized KdV equation, yielding R = 2.
Thus, the single soliton to the model is constructed as

9% 1n(9)
v=2m
where

¢ =1+ €a1$+b1y+clz—(a?+b1+cl)t.

To arrive at the double soliton of the model, the following ansatz:
52 In(9)

0x?
is substituted into the new generalized KdV equation. This leads to the phase shift
as follows:

u =2 qﬁzl—&—eﬁl—i—eﬂ?—i—algeﬂﬁﬁ?,

- aj — 3ajag + 4a3a3 — 3aya3 + a3
—at 4 3a%as + 4a2a? + 3a1ad + ad’
1 102 ) 1043 T g

a12

So, the double soliton to the model is established as
9°In(9)

9 9 9149
IR ¢:1+€1+62+a1261+2,

u=2
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(b)

1010 *

Fig. 3. (Color online) (a) Single soliton for a1 = =2, b1 =1, ¢1 = -1,y = 1, and ¢t = 0; (b)
Double soliton for a3 = —1.75, b1 =0.1,¢1 =0.1, a2 = —1,b2 =2, co = -1, y=1,and t = 0.

where

¢ =1+e" +e"2 4 appe”r ™02,

Vi = a;x + by +ciz — (al + by +c)t, i=1,2,
a} — 3atas + 4aa3 — 3a1a3 + a3

a} + 3atas + 4a2a2 + 3a1a3 + a3

a12

Figure 3 represents the physical mechanism of the above single and double solitons
for (a) ay = =2,b; =1,¢1 = -1,y =1,and t = 0; (b) a1 = —1.75, by = 0.1,
1 =0.1,a3=—-1,by =2,¢o = —1,y = 1, and t = 0. More precisely, Fig. 3(a) shows
a bright wave while Fig. 3(b) demonstrates the interaction of two bright waves.

3.4. Other solitons of the model

To derive other single solitons of the model, we first adopt two ansatzes as follows:
(i) u= A+ Btanh?®(az + by + cz — wt),
(ii) u= A+ Bsech?(az + by + cz — wt).

2250229-8
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By substitution of the first ansatz into Eq. (1), the following system is acquired:
360a® + 270Ba® + 45B%a = 0,
—240a® — 180A4a® — 300Ba® — 90ABa — 90B%a = 0,
16a° 4+ 60Aa® + 60Ba® + 45A%a + 90ABa + 45B%*a 4+ b+ ¢ —w = 0,
with the following results:
Result 1:
B =-2d% w="76a"—120Aa> +45A%a + b+ c.
So, the following single soliton to the model is achieved:
up = A — 2a* tanh®(az + by + cz — (76a° — 12040 4 45A%a + b+ o)t).

Result 2:

A=-a", = —4a?®, w=16a°+b+c.
Therefore, the following single soliton to the model is achieved:
8
Uz = §a2 — 4a® tanh®(az + by + cz — (16a° + b+ ¢)t).

In a similar way, by substitution of the second ansatz into Eq. (1), the following
system is derived:

360a® — 270Ba® + 45B%a = 0,
—240a° — 180A4a® 4+ 120Ba® + 90ABa = 0,
16a° + 60A4a® + 45A%a +b+c—w =0,

whose solution leads to the following results:

Fig. 4. (Color online) The second soliton fora =1, b=1,¢c=0.5,y =1, and t = 0.
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Result 1:
B =2d? w=16a" 4+ 604a> + 45A%a + b+ c.
Thus, the following single soliton to the model is gained:
uz = A+ 2a%sech? (ax + by + ¢z — (16a° 4+ 60Aa® + 45A%a + b+ o)t).
Result 2:

4
A= —§a27 B =4ad?, w=16a°"+b+ec.
Consequently, the following single soliton to the model is obtained:
4
Ug = f§a2 + 4a®sech®(ax + by + cz — (16a° + b+ o)t).

The physical mechanism of the second soliton, revealing a bright wave, has been
shown in Fig. 4 fora=1,b=1,¢c=0.5,y=1, and t = 0.

4. Conclusion

The main goal of this paper was to study a new generalized KdV equation that
simulates the motions of long waves in shallow water under the gravity field. More
precisely, by applying the TPE, the Backlund transformation of the model was first
extracted. Such a logarithmic transformation, u = 2(In(¢)),., was then employed to
construct the bilinear form of the new generalized KdV equation. Furthermore, sev-
eral well-designed methods were formally adopted to acquire diverse wave structures
of the governing model that are categorized as lump-type, complexiton, and soliton
solutions. In the end, some graphical illustrations were considered to exhibit the
physical mechanism of the obtained solutions for particular choices of the involved
parameters. In future work, the authors will try to apply other methods®® 2 for
constructing other diverse wave structures of the new generalized KdV equation.
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