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Abstract
In this paper, the dynamical behavior of a mathematical model of cancer including
tumor cells, immune cells, and normal cells is investigated when a delay term is
induced. Though the model was originally proposed by De Pillis et al. (Math. Comput.
Model. 37:1221–1244, 2003), to make the model more realistic, we have added a
delay term into the model, and it has incorporated novelty in our present work. The
stability of existing equilibrium points in the delay-induced system is studied in detail.
Global stability conditions of the tumor-free equilibrium point have been found. It is
shown that due to this delay effect, the coexisting equilibrium point may lose its
stability through a Hopf bifurcation. The implicit function theorem is applied to
characterize a complex function in a neighborhood of delay terms. Additionally, the
presence of Hopf bifurcation is demonstrated when the transversality conditions are
satisfied. The length of delay for which the solutions preserve the stability of the limit
cycle is estimated. Finally, through a series of numerical simulations, the theoretical
results are formally examined.

Keywords: Mathematical model of cancer; Stability analysis; Global stability analysis;
Hopf bifurcation; Implicit function theorem

1 Introduction
Cancer is one of the most difficult diseases to treat and is considered one of the leading
causes of death. Fighting cancer is important for public health. For this and other eco-
nomic reasons, extensive research is going on to understand the mechanism involved in
the growth of cancer and to predict the impact of this growth on the system [2].

Mathematical modelling is very important in epidemiology because it can provide in-
sight into the key mechanisms that contribute to the spread of disease and suggest control
strategies [3]. It is possible to describe a specific disease with mathematical models of
differential equations by considering the most important factors which are assumed to be
responsible for it and then derive useful information by solving the equations of the model
with suitable techniques. Researchers are using mathematical modelling for different dis-
eases like Covid, mumps, rabies, etc., to name a few. Interested readers are referred to the
recent works [4–7].
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Mathematical models of tumor growth are widely studied to understand the pathogen-
esis and predict its future function. One of the most challenging tasks in creating a math-
ematical model for cancer treatment is calculating biological parameters from data. This
task becomes more difficult when the model incorporates many cell types and treatment
modalities [8]. Over the past few decades, several experiments and interventions have
helped us understand the growth process and its interaction with the immune system.

Many models in the literature represent the dynamics of the systems that vary without
time delay [3, 8–11]. To show the realistic nature of the models, it makes sense to incorpo-
rate time delays into the systems. Inclusion of delays in mathematical models makes them
more realistic by explaining the effects of disease latency or immunity [12–14]. Specifi-
cally, the human immune system contains necessary detection systems and weapons to
counterattack foreign bodies. This system plays an important role in the prevention of
many diseases [15]. When abnormal cells appear in the body, the immune system is ac-
tivated, and it tries to identify and destroy those abnormal cells. In such a process, the
immune system will take some time to provide the right response after discovering the
non-self-cells [16–18]. As a result, incorporating the delay term makes the model more
realistic. Generally, when the system loses stability due to delays, other powerful nonlin-
ear factors such as oscillatory behavior and bifurcation may occur [19–22]. Accordingly,
the analysis of nonlinear dynamics has attracted the attention of many authors in recent
years.

Time delay plays an important role in modeling the dynamics of multispecies interac-
tions. Many researchers studied the delay-induced dynamics in predator–prey systems.
Beretta and Takeuchi [23] discussed the global stability of the Lotka–Volterra autonomous
model with diffusion and delay of time. The delay in the model proposed by Kuznetsov and
Taylor was studied by Galach [13], where the delay in time was introduced to achieve bet-
ter consistency with reality. In 2006, Yafia [24] explored the effect of delays on Kuznetsov’s
model. Xu and Ma [25] studied the SEIRS epidemic model with a saturation incidence
rate and time delay defining the latent period. In 2014, Rihan [26] explored a delay dif-
ferential model, analyzed it numerically, and demonstrated an effective way of combining
chemotherapy with therapeutic immunotherapy. Xu et al. [27] studied a mathematical
model with the delay effect on tumor growth due to periodic treatment such that their
model was based on reaction–diffusion dynamics and mass conservation law which took
into account cell proliferation delays. Yua et al. [28] incorporated delays into the model
for activation of the effector cells by helper T-cells, and after analyzing the results, it was
shown that delayed immune response could play a major role in regulating tumor growth.
In [29], Malinzi studied a delayed model to report delays resulting from virus–cell in-
fection and chemotherapy responses; based on the analysis, they proposed three drug-
injection methods: constant, single bolus, and periodic treatment. Laaroussi et al. [30]
presented a mathematical model of oncolytic virotherapy that included a long-term delay
representing multiple periods of the lytic cycle.

In the present study, we investigate a mathematical model that provides an important
connection between tumor and immune cells. The model is represented by a system of
three differential equations and was originally proposed by De Pillis et al. [1]. To make the
model more realistic, a time delay is incorporated into the prey (immune cells) specific
growth function due to tumor cells. This consideration has incorporated some novelty
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into our present investigation. We have analyzed the effect of delay on different dynamical
behaviors shown by the model.

The paper is structured as follows: Sect. 2 describes the proposed model and the ba-
sic assumptions. In Sect. 3, we examine the positive invariance and boundedness of the
model solutions. In Sect. 4, the existence of equilibrium points for the system is discussed.
Section 5 deals with finding the nature of stability of these equilibrium points, along with
the occurrence of Hopf bifurcation. In Sect. 6, some simulation results are presented. In
Sect. 7, we have our conclusion.

2 Model formulation
The model presented in this paper is a modified form of that proposed by De Pillis et
al. [1]. The modification is carried out by inducing delay terms in the second term viz.
Michaelis–Menten term of the first equation of the system with proper biological justi-
fications. Biochemical reactions involving a single substrate are often assumed to follow
Michaelis–Menten kinetics, without regarding the model’s underlying assumptions. The
change is done to see the impact of delay in the complete system.

The equations representing the system are as follows:

dM
dt

= μ +
ρM(t – τ )H(t – τ )

σ + H(t – τ )
– m1MH – d1M,

dH
dt

= r1H(1 – bH) – m2MH – h1HR, (1)

dR
dt

= r2R(1 – R) – h2RH ,

where M(t), H(t), and R(t) are the densities of the immune cells, tumor cells, and normal
cells, respectively.

The first equation of system (1) represents the rate of change of immune cells with re-
spect to time. The first term, namely μ, represents the constant source rate of immune
cells. Immune cells are recruited by tumor cells through the Michaelis–Menten term
ρMH/(σ + H), where ρ is the rate at which the immune cells grow, and σ represents
the steepness of immune response. To describe the time lag by the immune system for
developing a suitable response after recognizing the tumor cells, we need to include the
effect of time-delay τ into the Michaelis–Menten term [31]. Hence, a discrete-time delay
is added to the second term of the first equation of system (1) and, as a result, the term
becomes ρM(t – τ )H(t – τ )/(σ + H(t – τ )). The third term, –m1MH , represents the kill
rate of immune cells due to interaction with tumor cells, while the fourth term indicates
that immune cells die off at a rate of d1 per day.

In the second equation of system (1), tumor cells are assumed to grow logistically with
an intrinsic growth rate r1 and the maximum carrying capacity of b–1 in the absence of
immune cells and drug therapy. Tumor cells are killed by interaction with immune cells
and normal cells as shown by the terms –m2MH and –h1HR.

In the third equation of system (1), normal cells are also assumed to grow logistically
with an intrinsic growth rate r2 and the maximum carrying capacity of one. The second
term, –h2RH , represents the kill rate of the normal cell due to interaction with tumor cells.
Below, we have presented the parameter values which we have used for our investigation.

In the next section, we discuss the boundedness and positive invariance of the solutions
of the considered model and related subtopics.
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3 Boundedness and positive invariance
By following the standard comparison theory, from the equations of system (1), we get

dM
dt

= μ +
ρM(t – τ )H(t – τ )

σ + H(t – τ )
– m1MH – d1M ≤ μ – d1M.

Integration of the above leads to

M(t) ≤ μ

d1
+ M(0)e–d1t ⇒ lim

t→∞ sup
(
M(t)

) ≤ μ

d1
.

Furthermore,

dH
dt

= r1H(1 – bH) – m2MH – h1HR ≤ r1H(1 – bH).

Proceeding as above, we have

H(t) ≤ 1
b + H(0)e–r1t ⇒ lim

t→∞ sup
(
T(t)

) ≤ 1
b

,

and similarly, we find

dR
dt

= r2R(1 – R) – h2RH ≤ r2R(1 – R) ⇒ R(t) ≤ 1
1 + R(0)e–r2t

⇒ lim
t→∞ sup

(
R(t)

) ≤ 1,

with the initial conditions M(0) > 0, H(0) > 0, and R(0) > 0.
Therefore, the numbers of immune–tumor–normal cells are always bounded. Conse-

quently, we get the bounded set

� =
{(

M(t), H(t), R(t)
) ∈ R3

+ : 0 ≤ M(t) ≤ μ

d1
, 0 ≤ H(t) ≤ 1

b
, 0 ≤ R(t) ≤ 1

}
.

So, the solutions of system (1) are bounded.
The equations representing system (1) are

dM
dt

= μ +
ρM(t – τ )H(t – τ )

σ + H(t – τ )
– m1MH – d1M,

dH
dt

= r1H(1 – bH) – m2MH – h1HR,

dR
dt

= r2R(1 – R) – h2RH ,

subject to the following initial conditions:

M(ξ ) = ψ1(ξ ), H(ξ ) = ψ2(ξ ), R(ξ ) = ψ3(ξ ),

ψ1(ξ ) ≥ 0, ψ2(ξ ) ≥ 0, ψ3(ξ ) ≥ 0, ξ ∈ [–τ , 0],

ψ1(0) > 0, ψ2(0) > 0, ψ3(0) > 0,
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where

S+ =
{(

ψ1(ξ ),ψ2(ξ ),ψ3(ξ )
) ∈ S

(
[–τ , 0], R3

+
)}

. (2)

The delay differential system (1) can be written in the vector form as

Ẋ = F(X), (3)

with X = (M, H , R)T ∈ R3
+ and

F(X) =

⎛

⎜
⎝

μ + ρM(t–τ )H(t–τ )
σ+H(t–τ ) – m1MH – d1M

r1H(1 – bH) – m2MH – h1HR
r2R(1 – R) – h2RH

⎞

⎟
⎠ =

⎛

⎜
⎝

F1

F2

F3

⎞

⎟
⎠ ,

where F ∈ C∞(R3
+) is defined in the positive quadrant R3

+ and represents a mapping F :
S+ → R3

+. The right-hand side of system (3) is locally Lipchitz, meaning that the derivative
is bounded and satisfies

Fi(X)|Yi(t)=0,X∈S+ = Fi(0), i = 1, 2, 3.

According to the second lemma in [32], every solution of system (1) with initial conditions
(2), ψi(t) ∈ S+, say Y (t) = Y (t; Y (0)), for all t > 0, remains positive throughout the domain
S+, ∀t > 0. Therefore, the solutions of (1) are positively invariant in time t.

4 Existence of equilibrium points
The equilibrium points of model (1) are found by equating each first derivative to zero.
Those are found to be:

(i) P1(M1, 0, R1), the tumor-free equilibrium point. Here, M1 ≥ 0 and R1 ≥ 0 which are
found to be

M1 =
μ

d1
, R1 = 1.

(ii) P2(M2, H2, R2), the coexisting equilibrium point. Here, M2 ≥ 0, H2 ≥ 0, and R2 ≥ 0
and

M2 =
μ

d1 + m1H2 – ρH2
σ+H2

, H2 =
r1 – m2M2 – h1R2

r1b
, R2 =

r2 – h2H2

r2
.

Note that H2 can be found by solving the equation

H2 =
1
b

–
m2

r1b

(
μ(σ + H2)

(d1 + m1H2)(σ + H2) – ρH2

)
–

h1

r1b

(
r2 – h2H2

r2

)
,

or A1H3
2 + A2H2

2 + A3H2 + A4 = 0, where

A1 = m1r1r2b – m1h1h2,

A2 = (σm1 + d1 – ρ)(r1r2b – h1h2) – m1(r1r2 – h1r2),
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A3 = μr2m2 + σd1(r1r2b – h1h2) – (σm1 + d1 – ρ)(r1r2 – h1r2),

A4 = σμr2m2 – σd1(r1r2 – h1r2).

The equilibrium point P2 exists if

(d1 + m1H2)(σ + H2) > ρH2, H2 ≥ 0, and r2 > h2H2.

5 Analysis of the stability of the equilibrium points
In this section, we are interested in studying the nature of stability of the tumor-free equi-
librium and the coexisting equilibrium of the system.

5.1 Local stability analysis of the tumor-free equilibrium point P1

The Jacobian matrix of system (1) at the equilibrium point P1( μ

d1
, 0, 1) is

JP1 =

⎛

⎜
⎝

–d1
ρM1

σ
e–φτ – m1M1 0

–m2H1 r1 – m2M1 – h1R1 0
0 –h2R1 r2 – 2r2R1

⎞

⎟
⎠ .

At the equilibrium point P1( μ

d1
, 0, 1), the eigenvalues of the Jacobian matrix JP1 are

φ1 = –d1 < 0, φ2 = r1 –
m2μ

d1
– h1, φ3 = –r2 < 0.

By applying the standard result [3, 8], the necessary condition for asymptotic stability of
equilibrium point P1 is found to be r1 < m2μ

d1
+ h1, and this point will be unstable when

r1 ≥ m2μ

d1
+ h1.

Thus, all eigenvalues have negative real parts if r1 < (m2μ/d1) + h1 for all τ ≥ 0. Accord-
ingly, the equilibrium point P1 is locally asymptotically stable.

5.2 Global stability analysis of the tumor-free equilibrium point P1

In this section, using a Lyapunov function, we show that the tumor-free equilibrium point
P1 is also globally asymptotically stable when r1 < (m2μ/d1) + h1.

To this end, the work [30] is followed to study the dynamics of system (1) when τ ≥ 0.
We choose ψ = (ψ1,ψ2,ψ3) = (M, H , R) defined in the space

S+ =
{
ψ ∈ S

(
[–τ , 0], R3

+
)

: M(ξ ) = ψ1(ξ ), H(ξ ) = ψ2(ξ ), R(ξ ) = ψ3(ξ )
}

,

where ξ ∈ [–τ , 0], ψi(ξ ) ≥ 0 (i = 1, 2, 3), and ψi are continuous functions on the interval
[–τ , 0].

Considering a Lyapunov function given as

L(ψ) = ψ1(0) + ψ2(0) + ψ3(0) +
∫ 0

–τ

ρψ1(s)ψ2(s)
σ + ψ2(s)

ds,

we find that

dL(ψ)
dt

=
dψ1(0)

dt
+

dψ2(0)
dt

+
dψ3(0)

dt
+

ρψ1(0)ψ2(0)
σ + ψ2(0)

–
ρψ1(–τ )ψ2(–τ )

σ + ψ2(–τ )
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=
(

μ +
ρψ1(–τ )ψ2(–τ )

σ + ψ2(–τ )
– m1ψ1(0)ψ2(0) – d1ψ1(0)

)

+
(
r1ψ2(0)

(
1 – bψ2(0)

)
– m2ψ1(0)ψ2(0) – h1ψ2(0)ψ3(0)

)

+
(
r2ψ3(0)

(
1 – ψ3(0)

)
– h2ψ2(0)ψ3(0)

)

+
ρψ1(0)ψ2(0)
σ + ψ2(0)

–
ρψ1(–τ )ψ2(–τ )

σ + ψ2(–τ )

=
(
μ – m1ψ1(0)ψ2(0) – d1ψ1(0)

)

+
(
r2ψ1(0)

(
1 – bψ2(0)

)
– m2ψ1(0)ψ2(0) – h1ψ2(0)ψ3(0)

)

+
(
r2ψ3(0)

(
1 – ψ3(0)

)
– h2ψ2(0)ψ3(0)

)
+

ρψ1(0)ψ2(0)
σ + ψ2(0)

=
(
μ – d1ψ1(0)

)
+

(
r2ψ3(0)

(
1 – ψ3(0)

))

= μ – d1
μ

d1
+ r2.1(1 – 1) = 0.

Since dL(ψ)
dt = 0, we get {ψ ∈ R3

+ : M(ξ ) = ψ1(ξ ), H(ξ ) = ψ2(ξ ) = 0, R(ξ ) = ψ3(ξ )} = P1.
Now, the classical LaSalle’s invariance principle [30] implies that P1 is globally attractive.

This confirms the global asymptotically stability of P1 when r1 < (m2μ/d1) + h1.

5.3 Simulation results
To verify the above analytical results, we carry out the following simulations. In doing so,
we have considered the parameter values as given in Table 1.

Case 1: r1 < m2μ

d1
+ h1.

Figure 1 shows that when τ ≥ 0 and r1 < (m2μ/d1) + h1, the number of tumor cells de-
creases to zero (approx.) and the growth of immune and normal cells will be stabilized at
the tumor-free equilibrium point P1. It further shows that when the delay term increases
it takes more time to stabilize towards the equilibrium point P1.

From the vector field plot (Fig. 2), it is seen that an arbitrary trajectory (in the basin
of attraction) starting with different time delays converges to the tumor-free equilibrium
point P1 (indicated by the black dot) indicating that it is globally stable for system (1) as
long as the condition r1 < (m2μ/d1) + h1 is satisfied.

Figure 2 further shows (as in Fig. 1) that, as time lag is increased, complete elimina-
tion of the tumor cells takes more time. Biologically, we know that unless the tumor cells
get eradicated, the immune system remains active, and it eventually drops to its origi-

Table 1 Parameter values considered for the model

Parameters Meaning Values Source

μ Constant source rate of immune cells 0.05 [1]
d1 Natural immune cells death rate 0.2 [1]
r1 Intrinsic tumor growth rate 0.4 (Estimated) [1]
r2 Growth rate of normal cell 0.35 [1]
1/b Tumor population carrying capacity 2/3 [1]
m1 Immune cells kill rate owing to tumor cells 0.2 [1]
m2 Tumor cells kill rate owing to immune cells 0.3 [1]
h1 Tumor cells kill rate owing to normal cells 0.2 [1]
h2 Normal cells kill rate owing to tumor cells 0.25 [1]
ρ Maximum recruitment of immune cells by tumor cells 1 [1]
σ Constant half saturation for the proliferation term 0.4 [1]
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Figure 1 Density of immune, tumor, and normal cells for r1 = 0.27, M(0) = 0.25, H(0) = 0.01, and R(0) = 0.9
when (a) τ = 5 (red); (b) τ = 15 (green); and (c) τ = 25 (blue)

Figure 2 The vector field plot of immune–tumor–normal cells for r1 = 0.27, M(0) = 0.2, H(0) = 0.05, and
R(0) = 0.9 when (a) τ = 5 (red); (b) τ = 15 (green); and (c) τ = 25 (blue)

nal state when all the tumor cells get eliminated. When time lag increases, the immune
system will take some time to provide the right response after discovering the non-self-
cells, so in this process, immune cells require more time to completely eradicate the tumor
cells.

After verifying our analytical results numerically for r1 < (m2μ/d1)+h1, we proceed with
the numerical verification of the other case.

Case 2: r1 > m2μ

d1
+ h1.
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Figure 3 Density of immune, tumor, and normal cells for r1 = 0.4, M(0) = 0.25, H(0) = 0.01, and R(0) = 0.9
when (a) τ = 5 (red); (b) τ = 10 (green); and (c) τ = 15 (blue)

In the case of tumors with a high growth rate (r1 = 0.4) (which is in the unstable range),
Fig. 3 shows that when the immune system takes a long time to provide an adequate re-
sponse to the tumor cells for recognition, the tumor growth rate gets faster and the system
loses its stability and moves away from the coexisting equilibrium point P2.

Therefore, we need to consider the effect of delay in the proliferation of the cells induced
by the tumor cells when r1 > (m2μ/d1) + h1. In the event of a long delay, the system will
lose stability since other strong factors can occur such as the periodic oscillatory behavior
or bifurcation.

5.4 The coexisting equilibrium point P2 and its analysis
The Jacobian matrix of system (1) at the coexisting equilibrium point P2(M2, H2, R2) is

JP2 =

⎛

⎜
⎝

X1e–φτ + X2 X5e–φτ – m1M2 0
–m2H2 X3 –h1H2

0 –h2R X4

⎞

⎟
⎠ ,

where

X1 =
ρH2

σ + H2
, X2 = –d1 – m1H2, X3 = r1 – 2r1bH2 – m2M2 – h1R2,

X4 = r2 – 2r2R2 – h2H2, X5 =
σρM2

(σ + H2)2 .
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The eigenvalues associated with the coexisting equilibrium point P2(M2, H2, R2) are de-
rived from the characteristic equation

	(φ, τ ) =
(
X1e–φτ + X2

)
(X3X4 – h1h2R2H2) +

(
m2H2X4X5e–φτ – m1m2H2M2X4

)

– φ
(
(X3X4 – h1h2R2H2) + (X3 + X4)

(
X1e–φτ + X2

)

+
(
m2H2X5e–φτ – m1m2H2M2

))

+ φ2((X3 + X4) +
(
X1e–φτ + X2

))
– φ3 = 0,

or

	(φ, τ ) = φ3 + X11φ
2 + X12φ + X13 + e–τφ

(
Y11φ

2 + Y12φ + Y13
)

= 0, (4)

where

X11 = –(X2 + X3 + X4),

X12 = X2X3 + X3X4 + X2X4 – m1m2M2H2 – h1h2R2H2,

X13 = m1m2M2H2X4 + h1h2H2R2X2 – X2X3X4,

Y11 = –X1,

Y12 = X1X3 + X1X4 + m2H2X5,

Y13 = –(m2H2X4X5 + X1X3X4 – h1h2R2H2X1).

For analyzing the effect of delay in our investigation, the following cases are considered:
Case (i): τ = 0. Without any delay (τ = 0), the characteristic equation reduces to

φ3 + (X11 + Y11)φ2 + (X12 + Y12)φ + (X13 + Y13) = 0.

According to the Routh–Hurwitz criterion, all the roots of the equation have negative
real parts if

(X11 + Y11) > 0, (X11 + Y11)(X12 + Y12) > (X13 + Y13),

where

X11 + Y11 = –
(

ρH2

σ + H2
– d1 – m1H2 + r1 – 2r1bH2 – m2M2

– h1R2 + r2 – 2r2R2 – h2H2

)
,

and

(X11 + Y11)(X12 + Y12) – (X13 + Y13)

=
(

d1 + m1H2 – r1 + 2r1bH2 + m2M2 + h1R2 – r2 + 2r2R2 + h2H2 –
ρH2

σ + H2

)
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×
((

ρH2

σ + H2
– d1 – m1H2 + r2 – 2r2R2 – h2H2

)
(r1 – 2r1bH2 – m2M2 – h1R2)

+
(

ρH2

σ + H2
– d1 – m1H2

)
(r2 – 2r2R2 – h2H2)

– m1m2M2H2 – h1h2R2H2 + m2H2
σρM2

(σ + H2)2

)

–
(

m1m2M2H2(r2 – 2r2R2 – h2H2) + h1h2H2R2(d1 + m1H2)

+
(

(d1 + m1H2) +
ρH2

σ + H2

)
(r1 – 2r1bH2 – m2M2 – h1R2)(r2 – 2r2R2 – h2H2)

+
(

m2H2(r2 – 2r2R2 – h2H2)
σρM2

(σ + H2)2 + h1h2R2H2
ρH2

σ + H2

))
.

Thus, if the above conditions are satisfied then the coexisting equilibrium point
P2(M2, H2, R2) will be stable.

Case (ii): τ > 0. The immune system needs some time to develop a suitable response by
recognizing the tumor cells and, therefore, the time delay is introduced into the model.

The characteristic equation with time delay is

φ3 + X11φ
2 + X12φ + X13 + e–τφ

(
Y11φ

2 + Y12φ + Y13
)

= 0.

The classical Routh–Hurwitz criterion does not apply to the delay system (1), since this
equation is transcendental and has an infinite number of solutions. Substituting φ = λi
(λ > 0) into equation (4) gives

(λi)3 + X11(λi)2 + X12(λi) + X13 + e–τλi(Y11(λi)2 + Y12(λi) + Y13
)

= 0.

Separation of imaginary and real parts leads to

– λ3 + X12λ =
(
Y13 – λ2Y11

)
sin(λτ ) – λY12 cos(λτ ), (5.1)

X11λ
2 – X13 =

(
Y13 – λ2Y11

)
cos(λτ ) + λY12 sin(λτ ). (5.2)

Squaring (5.1) and (5.2) and adding the resulting equations yields

λ6 +
(
X2

11 – 2X12 – Y 2
11

)
λ4 +

(
X2

12 – 2X11X13 + 2Y11Y13 – Y 2
12

)
λ2 +

(
X2

13 – Y 2
13

)
= 0,

or

λ6 + p11λ
4 + p12λ

2 + p13 = 0. (6)

Here

p11 =
(
X2

11 – 2X12 – Y 2
11

)

= (σ + H2)2(–r2 + h2H2 – r1 + m2M2 + h1R2 – d1 – m1H2)2

> 2(σ + H2)2((–r2 + h2H2)(–r1 + m2M2 + h1R2 – d1 – m1H2)
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– (–r1 + m2M2 + h1R2)(d1 + m1H2) – m1m2M2H2 – h1h2R2H2
)

+ (ρH2)2, (7)

p13 =
(
X2

13 – Y 2
13

)

=
(
(–r2 + h2H2)(–r1 + m2M2 + h1R2)(d1 + m1H2) + h1h2R2H2(d1 + m1H2)

+ (–r2 + h2H2)m1m2M2H2
)2

–
(

(–r2 + h2H2)m2H2
σρM2

(σ + H2)2 + (–r2 + h2H2)(–r1 + m2M2 + h1R2)
ρH2

σ + H2

– h1h2R2H2
ρH2

σ + H2

)2

. (8)

Using the parameter values listed in Table 1 in equations (7) and (8), we find p11 > 0 and
p13 < 0. Now, we can conclude that equation (6) has at least one nonnegative real root and
so, the characteristic equation (4) has purely imaginary roots ±λ0i (say). This implies that
there is a stability switch at P2 as τ changes.

Eliminating sin(λτ ) from (5.1) and (5.2) (substituting (5.2) into (5.1)), we get

–λ3 + X12λ =
(
Y13 – λ2Y11

)
(

X11λ
2 – X13 – (Y13 – λ2Y11) cos(λτ )

λY12

)
– λY12 cos(λτ )

⇒ λY12
(
–λ3 + X12λ

)

=
(
X11λ

2 – X13
)(

Y13 – λ2Y11
)

–
(
Y13 – λ2Y11

)2
cos(λτ ) – λ2Y 2

12 cos(λτ )

⇒ cos(λτ ) =
(Y13 – λ2Y11)(X11λ

2 – X13) – λY12(–λ3 + λX12)
(Y13 – λ2Y11)2 + λ2Y 2

12
.

From the above equation, the time lag τ ∗
n corresponding to λ0 is given by

τ ∗
n =

2nπ

λ0
+

1
λ0

arccos

[
(Y13 – λ2

0Y11)(X11λ
2
0 – X13) – λ0Y12(–λ3

0 + X12λ0)
(Y13 – λ2

0Y11)2 + λ2
0Y 2

12

]
,

where n is an integer.
So, the equilibrium point P2 is locally asymptotically stable for all [0, τ0) where τ0 = τ ∗

0

(by putting n = 0 in the above expression of τ ∗
n ) if conditions p11 > 0 and p13 < 0 (from

equations (7) and (8)) are satisfied [33].

5.5 Occurrence of Hopf bifurcation
We now investigate the occurrence of a Hopf bifurcation when the delay term τ passes
through the critical value τ = τ0.

The characteristic equation (4) has purely imaginary eigenvalues φ0 = iλ0 and φ0 = –iλ0

at τ = τ0. From equation (4), we have

	(φ0, τ0) = 0

and

∂	(φ0, τ0)
∂φ

= –3λ2
0 + 2iX11λ0 + X12 + e–iτ0λ0

(
2iY11λ0 + Y12 – τ0

(
–Y11λ

2
0 + iY12λ0 + Y13

)) 
= 0.
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Thus, according to the implicit function theorem, there exists a complex function φ = φ(τ )
defined in a neighborhood of τ0 such that φ(τ0) = φ0 and 	(φ(τ ), τ ) = 0 and

dφ

dτ
= –

∂	(φ(τ ),τ )
∂τ

∂	(φ(τ ),τ )
∂φ

, for τ in a neighborhood of τ0,

dφ

dτ
=

φe–τφ(Y11φ
2 + Y12φ + Y13)

3φ2 + 2X11φ + X12 + e–τφ(2Y11φ + Y12 – τ (Y11φ2 + Y12φ + Y13))
. (9)

From equations (4) and (9), we obtain the following expression:

(
dφ

dτ

)–1

=
–(3φ2 + 2X11φ + X12)

φ(φ3 + X11φ2 + X12φ + X13)
+

2Y11φ + Y12

φ(Y11φ2 + Y12φ + Y13)
–

τ

φ
. (10)

Let φ(τ ) = Re(φ(τ )) + i Im(φ(τ )). Then, from (10), we find

(
d Re(φ(τ ))

dτ

)–1

τ=τ0

=
[

3λ4
0 – 2λ2

0(2X12 – X2
11) + X2

12 – 2X11X13

(X13 – X11λ
2
0)2 + (λ3

0 – X12λ0)2 –
2λ2

0Y 2
11 + (Y 2

12 – 2Y11Y13)
(λ0Y11 – Y13)2 + λ2

0Y 2
12

]

= 0,

which verifies the transversality condition for the Hopf bifurcation. Therefore, system (1)
undergoes a Hopf bifurcation at τ = τ0 and an isolated periodic orbit emerges about P2.

Thus, the coexisting equilibrium point P2 is locally asymptotically stable for all τ = 0.
Further, if X2

11 –2X12 –Y 2
11 > 0 and X2

13 –Y 2
13 < 0, then there exists a positive number τ0 such

that P2 is locally asymptotically stable for 0 < τ < τ0 and unstable for τ > τ0. Additionally,
system (1) undergoes a Hopf bifurcation at P2 when τ = τ0.

5.6 Verification of existence of limit cycle through simulation
In this subsection, we verify the above analytical results with numerical simulations for the
parameter values listed in Table 1. The singular point P2 is located at (0.579465, 0.0572258,
0.959124), and we have p11 = 0.15238135, p12 = 0.00642814197, and p13 = –0.0000266.
There exists a single pure real root λ0 = 0.06156 for which we found that τ0 = 18.91866.

Figure 4(a) shows that the equilibrium point P2 remains a stable spiral for τ < τ0 =
18.9186. Physically, it means that the growth of the cancerous tumor is slowed down for
a while but not eradicated. From Fig. 4(b), it is seen that a limit cycle, i.e., an isolated pe-
riodic solution, appears when the value of τ is increased to τ0 = 18.91866. Physically, it
means that with the delay of time, tumorous cells begin to show a dominant nature and,
therefore, the immune response is insufficient to reduce the rapid growth of the number of
tumor cells. After this point, administration of the drug is approved; otherwise, the tumor-
ous growth becomes faster at the expense of immune and normal cells and can eventually
lead the patient to a fatal condition.

5.7 Stability of limit cycle: length of time lag estimation
In this section, we investigate the stability of bifurcating periodic solutions and estimate
the length of time lag preserving the stability of the period-1 limit cycle. For this, system
(1) is first linearized around the interior equilibrium point P2(M2, H2, R2) which gives

dM
dt

=
σρM∗H(t – τ )
(σ + H(t – τ ))2 – m1M∗H +

ρH∗M(t – τ )
σ + H∗ – m1H∗M – d1M,
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Figure 4 The phase portrait for the cell populations with M(0) = 0.7, H(0) = 0.01, and R(0) = 0.993 in the case
(a) τ < τ0, where the steady-state is asymptotically stable and (b) τ = τ0, where a limit cycle is born around
the steady-state with r1 = 0.4

dH
dt

= –m2H∗M +
(
r1 – 2r1bH∗ – m2M∗ – h1R∗)H – h1H∗R, (11)

dR
dt

= –h2R∗H +
(
r2 – 2r2R∗ – h2H∗)R.

Applying the Laplace transformation to system (11) leads to

φLM(φ) – M(0)

= –d1LM(φ) – m1H∗LM(φ) – m1M∗LH (φ) +
σρM∗

(σ + H)2 e–φτ LH(φ)

+
ρH∗

σ + H∗ e–φτ LM(φ) +
σρM∗

(σ + H)2 e–φτ KH (φ) +
ρH∗

σ + H∗ e–φτ KM(φ),

φLH (φ) – H(0)

= –m2H∗LM(φ) +
(
r1 – 2r1bH∗ – m2M∗ – h1R∗)LH (φ) – h1H∗LR(φ),

φLR(φ) – R(0) = –h2R∗LH (φ) +
(
r2 – 2r2R∗ – h2H∗)LR(φ),

where

KH (φ) =
∫ 0

–τ

e–φτ H(t) dt, KM(φ) =
∫ 0

–τ

e–φτ M(t) dt,

and LM(φ), LH (φ), and LR(φ) are the Laplace transformations of M(t), H(t), and R(t), re-
spectively.

Now, using the theory provided by the classical Nyquist criteria [15] and Freedman et
al. [33], the equilibrium point P2 will be asymptotically stable if for the expression

P(φ) = φ3 + X11φ
2 + X12φ + X13 + e–τφ

(
Y11φ

2 + Y12φ + Y13
)
,
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the following conditions hold:

Re
(
P(iζ0)

)
= 0, (12)

Im
(
P(iζ0)

)
= 0, (13)

where ζ0 is the minimal nonnegative root of (12) and (13).
From (12), we have

X11ζ
2
0 = X13 +

(
Y13 – ζ 2

0 Y11
)

cos(ζ0τ ) + ζ0Y12 sin(ζ0τ ). (14)

Using the inequalities | cos(ζ0τ )| ≤ 1 and | sin(ζ0τ )| ≤ 1, we get

|X11|ζ 2
0 = |X13| + |Y13| + ζ 2

0 |Y11| + ζ0|Y12|. (15)

From (15), we find

ζ+ ≤ |Y11| +
√

Y 2
11 + 4(|X11| – |Y11|)(|X13| + |Y13|)

2(|X11| – |Y11|) .

Also, from (13), we have

ζ 2
0 < X12 –

Y13 sin(ζ0τ )
ζ0

+ Y12 cos(ζ0τ ) + ζ0Y11 sin(ζ0τ ). (16)

Using (14) and (16) gives

(
Y13 – Y11ζ

2
0 – X11Y12

)(
cos(ζ0τ ) – 1

)
+

(
(Y12 – X11Y11)ζ0 +

X11Y13

ζ0

)
sin(ζ0τ )

< X11X12 – X13 + X11Y12 – Y13 + Y11ζ
2
0 . (17)

Through the inequality (16) for τ = 0, (17) becomes

(
Y13 – Y11ζ

2
0 – X11Y12

)(
cos(ζ0τ ) – 1

)
+

(
(Y12 – X11Y11)ζ0 +

X11Y13

ζ0

)
sin(ζ0τ )

< (X11 + Y11)(X12 + Y12) – (X13 + Y13). (18)

Now, the first and second terms of the left-hand side of (18) can be respectively written as

(
Y13 – Y11ζ

2
0 – X11Y12

)(
cos(ζ0τ ) – 1

)
= 2

(
Y11ζ

2
0 + X11Y12 – Y13

)
sin2

(
ζ0τ

2

)

≤ 1
2
ζ 2

+
∣
∣(Y12ζ

2
+ + X11Y12 – Y13

)∣∣τ 2

and

(
(Y12 – X11Y11)ζ0 +

X11Y13

ζ0

)
sin(ζ0τ ) ≤ (|Y12 – X11Y11|ζ 2

+ + |X11||Y13|
)
τ .
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Therefore, from (18), we find

χ1τ
2 + χ2τ ≤ χ3,

where

χ1 =
1
2
ζ 2

+
∣∣(Y12ζ

2
+ + X11Y12 – Y13

)∣∣,

χ2 = |Y12 – X11Y11|ζ 2
+ + |X11||Y13|,

χ3 = (X11 + Y11)(X12 + Y12) – (X13 + Y13).

Now, expression (18) gives

τ+ =
1

2χ1

(
–χ2 +

√
χ2

2 + 4χ1χ3

)
for 0 ≤ τ ≤ τ+.

Therefore, the period-1 limit cycle arising in the system preserves stability around the
equilibrium P2 for the maximum length of the time lag τ+.

6 Other simulation results
In this section, we demonstrate a series of numerical simulations associated with the the-
oretical results obtained in the previous sections. In particular, we are interested in the
scenarios where the induced time delay changes the stability, i.e., situations where, for the
same set of parameters, a stable steady state becomes unstable with a change in the delays
or vice versa. The parameter values have been selected from Table 1.

Case 1: r1 < m2μ

d1
+ h1. It has already been shown in the figures of Sect. 5.3.

Case 2: r1 ≥ m2μ

d1
+ h1.

From Figs. 5 and 6, it is seen that when discrete-time delay τ increases, the growth of
tumor cells also increases, and the system loses its stability and moves away from the coex-
isting equilibrium point P2. When the time lag τ < τ0, the equilibrium point P2 is asymptot-
ically stable and the solutions converge to a coexisting equilibrium point. The solutions of
the system for τ < τ0 can be seen in Figs. 5(a) and 6(a) where the system has damped oscil-
lations and the coexisting equilibrium point is locally asymptotically stable. Figures 5(b)
and 6(b) show a stable limit cycle with time delay τ0 = 18.91866, i.e., high competition
among the three cell populations, namely tumor, normal, and immune cells.

Furthermore, from Figs. 5(c) and 6(c), it is observed that when the time lag τ > τ0, the
system is unstable. Determination of the bifurcation point is important for the control of
tumor cell populations. After the bifurcation point, system (1) will exhibit unstable behav-
ior, which in turn leads to the uncontrolled growth of the tumor (Fig. 5(c)). It was found
that immune and normal cells fought against the tumor cells but failed to stop the growth
of the tumor cells.

In Figs. 5 and 6, it can be observed that the proliferation of tumor cells depends on
the time taken by the immune system’s response to the tumor cells. To balance the effect
of delay, it is necessary to increase the growth rate of immune cells and the strength of
normal cells in their competition against tumor cells. Hence, in the biological sense, the
results have practical significance in terms of determining the amount of drugs required to
eliminate the tumor, otherwise, the tumor may grow in a periodic way putting the health
of the patient in danger.
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Figure 5 Density of immune, tumor, and normal cells for r1 = 0.4 and M(0) = 0.7, H(0) = 0.01, and R(0) = 0.993
when (a) τ = 8, (b) τ = τ0 = 18.91866, and (c) τ = 35

7 Conclusion
In this paper, we studied the dynamical behavior of a nonlinear model which was origi-
nally proposed by De Pillis et al. by inducing a delay term in the immune system–tumor
interaction term. It was done to make the model more realistic. Mathematical analysis of
the model demonstrated that, when r1 < (m2μ/d1) + h1, the tumor cells can be eradicated
by the combined effort of the immune system and normal cells without the application
of any drug. When r1 > (m2μ/d1) + h1 and the immune system takes a long time to rec-
ognize the tumor cells to give an adequate response (i.e., delay term is large), the tumor
growth rate is faster and the system loses its stability and moves away from the tumor-free
equilibrium point P1 and, as a result, the immune–normal cells fail to eradicate the tumor
load.

To understand more details about the dynamical behavior of the system, we explored
the coexisting equilibrium point when r1 ≥ (m2μ/d1) + h1. After analysis, it was concluded
that the Hopf bifurcation occurs when the time delay increases to τ = τ0. When the delay
term is τ < τ0, the coexisting equilibrium is locally asymptotically stable at the coexisting
equilibrium point P2 and becomes unstable when τ > τ0. In such a situation, to balance
the effect of delay, it is necessary to increase the growth rate of immune and normal cells
in their competition against tumor cells by employing some drugs.

All of our conclusions are based on the theoretical investigation and some numerical
simulations supporting the results. Experimental or clinical verifications will give proper
feedback whether the assumptions considered in the formulation of the model and the
parameter values used are correct or if they need some modifications.
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Figure 6 Parametric plot of immune and tumor cells for r1 = 0.4 and M(0) = 0.7, H(0) = 0.01, and R(0) = 0.993
when (a) τ = 8 (blue); (b) τ = τ0 = 18.91866 (red); and (c) τ = 35 (green)

Moreover, the numerical simulations involved in the paper were carried out by using the
inbuilt software of Mathematica. The order of convergence of the methods employed, the
CPU time required, etc., were not addressed as we were interested in studying only the
dynamical behaviors shown by the system. Readers who are interested in those aspects
and also in different methodologies to carry out the investigation of different problems in
epidemiology are referred to the papers [34–43].
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