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Abstract

This study proposes a modified prey–predator-like model consisting of tumour cells, hunting T-cells, and resting T-cells
o illustrate tumour–immune interaction by incorporating discrete-time-delay with conversion or growth of hunting cells. For
nalysis, the proposed system has been transformed into a normalized system, and its non-negativity solution has been verified.
he linear stability of the system has been analysed at each equilibrium. The discrete-time delay affects the system’s stability,
nd the system undergoes a Hopf bifurcation. Moreover, the length of time delay for which a periodic solution can be preserved
as been derived. Finally, numerical computations have been presented that correlate with analytical results and are also relevant
rom a biological perspective.

2022 International Association for Mathematics and Computers in Simulation (IMACS). Published by Elsevier B.V. All rights
eserved.
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1. Introduction

Nowadays, researchers are employing mathematical models to investigate how cancer grows under the influence
f the immune system [3,7,9–11,14–16,20,29,31,40,43,44], and different treatment strategies [1,2,12,28,41,42,45].
evertheless, there has been an increasing interest in the role of the immune system in stopping tumour growth [30].
ells such as macrophages, natural killer cells, and T-cells help the immune response fight against tumours.
uznetsov et al. [27] proposed a mathematical model to show how the cytotoxic T-lymphocytes respond when

n immunogenic tumour develops. They used a realistic set of parameter values for local and global bifurcations to
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predict tumour growth and clinical manifestations. By developing a mathematical model that could be tested in both
mice and humans, de Pillis et al. [17] investigated the roles of natural killer (NK) and CD8+ T-cells in suppressing
various tumour cells. Rihan et al. [36] have modified the Kuznetsov et al. [27] model with the inclusion of adoptive
cellular immunotherapy, and they explain the effectiveness of the prescribed therapy on the elimination process
of the tumour. Dritschel et al. [21] investigated the role of cytotoxic and helper T-cells in eliminating cancerous
tumours. They also demonstrated that combination therapies that stimulate the immune system while inhibiting
tumour-induced immuno-suppression may synergistically slow cancer progression. Pang et al. [33] recently reported
that increasing the flow of mature cytotoxic T-lymphocytes could eradicate tumour cells completely. Beck et al. [5]
developed a mathematical model to describe the dynamic in vivo two-photon imaging of tumour-infiltrating CTLs
and to determine the effects of C D137 agonist antibodies on their function. They found that the immediate effects of
co-stimulation via the C D137 receptor were a more potent anti-proliferative effect with a more sustained presence

f CTLs within the tumour.
It has been demonstrated by Bi et al. [6], Rihan et al. [35], Ghosh et al. [24], Dong et al. [19], Khajanchi

t al. [26], Das et al. [8,13] Sardar et al. [38], Dehingia et al. [18] that the time-delay in tumour–immune dynamics
s significant since it is incorporated as a memory effect in the biological systems [34]. Furthermore, several
tudies have reported that discrete-time lags considered in various processes such as the development and growth of
ellular molecules, the proliferation of cells, stimulation of cell populations, differentiation of cell populations, and
nteraction between two cells describe a realistic scenario for tumour–immune dynamics. In this study, we developed

mathematical model based on three delay differential equations to model the dynamics of the tumour–immune
ystem with hunting T-cells.

It is possible to distinguish between two types of T-cells: (i) cytotoxic T-lymphocytes or hunting T-cells, which are
apable of killing tumours through direct interaction; and (ii) T-helper cells or resting T-cells, which are not capable
f killing tumours through direct interaction but can aid in the action of hunting T-cells by secreting anti-tumour
ytokines. In light of the preceding scenario, Sarkar and Banerjee [39] developed a prey–predator type deterministic
umour growth model in 2005 that took into account tumour cells, hunting T-cells, and resting T-cells. According
o their findings, a threshold value for the rate of predation of tumour cells by the hunting cells can be determined
y comparing the rate at which resting cells convert to hunting cells with the other system parameters at which
he growth of the tumour can be controlled. The researchers also converted the deterministic model to a stochastic
ne by allowing random fluctuations to regression. As a result, they discovered specific conditions and threshold
alues for the intensities of stochastic fluctuations for which the density of malignant tumour cells decreases to a
ery low value. El-Gohary [22] extended the model [39] to a problem of optimal control for controlling the chaos
n unstable steady-states of the system. It was revealed through the analyses that the system exhibits a transition
rom an uncontrolled to a controlled steady-state for a variety of parameter values and initial densities. Sarkar and
anerjee [39] model has been modified yet again in two different works [4,37], including time-delay. Because of

ime delay, the results of both studies revealed that stability switches to unstable via Hopf-bifurcation due to the
isturbance caused by it. Based on the work [22,39], Kaur and Ahmad [25] developed a model which included
he Michaelis–Menten function for the stimulation of resting cells by tumour cells. As a result of their findings,
f the growth rate of resting cells increases, the immune system may prevent tumour cells from progressing. The

odel Kaur and Ahmad [25] is the foundation of our current research. Because the resting T-cells are converted
o the hunting stage through various chemical processes, it is biologically plausible that the resting T-cells are not
ontinuously converted to the hunting stage at the onset of the tumour. In this way, there is the possibility that
unting T-cells will grow at a slower rate than normal, a phenomenon known as conversion or growth delay. To
his end, we introduce a discrete time-delay term into the growth process of hunting T-cells in the model of Kaur
nd Ahmad [25].

The organization of the remaining sections is as follows; the proposed model is presented in Section 2. We discuss
he model’s qualitative behaviour, such as positivity, the existence of equilibria, and linear stability, in Section 3.
ection 4 examines the Hopf bifurcation and estimates the length of the time delay that is necessary to maintain
tability. In Section 5, the findings of the analysis are validated numerically. Finally, in Section 6, some concluding
emarks are presented.

. Model description

In recent decades, the theoretical study of tumour–immune dynamics has become a rising trend. As a result,

arious mathematical models have been developed to address different aspects of tumour–immune dynamics. A
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Fig. 1. The schematic diagram of the model consisting of tumour cells (C), Hunting T-cells (Lh ) and resting T-cells (Lr ).

modified version of the Kaur and Ahmad [25] model has been proposed in this study, with a discrete-time delay in

the growth of hunting T-cells as an intervention. So, the proposed model takes the following form:

dC(τ )
dτ

= s + r1C(τ )(1 − k−1
1 C(τ )) − α1C(τ )Lh(τ ),

d Lh(τ )
dτ

= βLh(τ − ∆)Lr (τ − ∆) − d1Lh(τ ) − α2Lh(τ )C(τ ),

d Lr (τ )
dτ

= r2Lr (τ )(1 − k−1
2 Lr (τ )) − βLh(τ )Lr (τ ) − d2Lr (τ ) +

ρC(τ )Lr (τ )
η + C(τ )

,

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
(2.1)

where at any time τ , C(τ ) is the amount of malignant tumour cells, Lh(τ ) is the amount of hunting T-cells and Lr (τ )

is the amount of resting T-cells. The discrete-time delay in the growth of hunting T-cells is represented by ∆. It is

assumed that in the presence of tumour cells, the tumour-specific resting T-cells can grow, and this mechanism is

represented by the Michaelis–Menten term ρC(τ )Lr (τ )
η+C(τ ) , where ρ is proliferation rate and η is the steepness coefficient.

The definitions of other parameters are as follows:

s: constant conversion rate of normal cells to malignant tumour cells.

r1: growth rate of malignant tumour cells.

k1: maximum carrying capacity of malignant tumour cells.

α1: killing rate of malignant tumour cells by hunting T-cells.

β: rate of conversion of the resting T-cells to hunting T-cells.

d1: rate of natural decay of hunting T-cells.

α2: killing rate of hunting T-cells by malignant tumour cells.

r2: growth rate of resting T-cells.

d2: rate of natural decay of resting T-cells.
A schematic diagram of the model is shown in Fig. 1.
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We convert the above system (2.1) into a dimensionless form by assuming
[
x(t), y(t), z(t)

]
=

(
k−1

1 C, α1k1s−1Lh,
−1
2 Lr

)
with t = sτk−1

1 , δ = ∆, and the system takes the following form

dx
dt

= 1 + a1x(1 − x) − xy,

dy
dt

= a2 y(t − δ)z(t − δ) − a3 y − a4xy,

dz
dt

= a5z(1 − z) − a6 yz − a7z +
a8xz

K + x
,

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
(2.2)

where x(t), y(t) and z(t) respectively represent the normalized amount of malignant tumour cells, hunting T-cells and
esting T-cells at any time t with the new parameter set: a1 = r1k1s−1, a2 = βk1k2s−1, a3 = k1d1s−1, a4 = α2k2

1s−1,
5 = r2k1s−1, a6 = βα−1

1 , a7 = k1d2s−1, a8 = k1ρs−1, and K = ηk−1
1 .

The history functions for the system (2.2) are:

x(φ) = ψ1(φ), y(φ) = ψ2(φ), z(φ) = ψ3(φ), (2.3)

ith ψ1(φ) ≥ 0, ψ2(φ) ≥ 0 and ψ3(φ) ≥ 0 for φ ∈ [−δ, 0], where ψi (φ) ∈ R+, ∀i = 1, 2, 3 and are the continuous
apping on [−δ, 0) which may display jumps at φ = 0.

. Qualitative behaviour

From the biological point of view, the proposed system (2.2) has to be a unique and non-negative solution
orresponding to the history functions (2.3). In order to do, we state the following theorem.

.1. Basic characteristics

heorem 3.1. Corresponding to the history functions (2.3), every solution of the system (2.2) is unique in [0,∞)
nd non-negative throughout the region R3

+
, for all t > 0.

roof. The system (2.2) can be represented in vector form as Ż (t) = A(Z ) where Z = [x(t), y(t), z(t)]T
∈ R3

+,0,
nd the mapping A : C+ ↦→ R3

+,0 for A ∈ C∞(R3
+

) defined in the non-negative octant R3
+,0 where

A(Z ) =

⎛⎝A1(Z )
A2(Z )
A3(Z )

⎞⎠ =

⎛⎝ 1 + a1x(1 − x) − xy
a2 y(t − δ)z(t − δ) − a3 y − a4xy
a5z(1 − z) − a6 yz − a7z +

a8xz
K+x

⎞⎠ . (3.1)

The vector function A is locally Lipschitz and a continuous function, and it satisfies the conditions

Ai (Z )|Zi (t), Z ∈ R3
+

= Ai (0) ≥ 0 ∀ i = 1, 2, 3. (3.2)

hus, for the history functions (2.3), ψi (t) ∈ R+, every solution of the system (2.2) is unique and it remains
on-negative throughout the region R3

+
, ∀t > 0 [43]. □

.2. Equilibrium and linear stability

For δ = 0, Kaur and Ahmad [25] already reported the linear stability conditions for the biologically feasible
quilibrium of the system (2.2). However, the conditions of existence for the equilibrium of a time-delayed system
re the same as for an ordinary system. Here, we will examine the stability of the systems’ (2.2) at three biologically
easible equilibrium points.

• The equilibrium E1(x1, 0, 0) with x1 =
1
2 (1 +

√
1 +

4
a1

) always exists. At this equilibrium, only malignant
tumour cells are present, and it can be regarded as tumour-persistent equilibrium.

• The equilibrium E2(x2, 0, z2) with x2 =
1
2

(
1+

√
1 +

4
a1

)
and z2 =

1
a5

(
a5−a7+

a8x2
K+x2

)
exists for a5+

a8x2
K+x2

> a7.
It implies that if the growth rate is greater than the death rate of resting T cells in the presence of tumour
cells, the equilibrium E2 exists. At this equilibrium, only tumour and resting predator cells are present. This
equilibrium is also regarded as tumour-persistent equilibrium.
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v

• It is clear that the equilibrium E∗(x∗, y∗, z∗) exists and is biologically feasible for x∗ > 0, y∗ > 0 and z∗ > 0.

It also exists only for z∗
=

a3+a4x∗

a2
, y∗

=
a5(1−

a3+a4x∗

a2
)−a7+

a8x∗

K+x∗

a6
with the following equation

l3x∗3
+ l2x∗2

+ l1x∗
+ l0 = 0,

having at least one positive root x∗; where

l3 = a1a0 −
a4a5

a2
,

l2 = a5 − a7 + a8 −
a5

a2
(a3 + a4 K ) − a1a6(1 − K ),

l1 = a5 K −
{
a7 K +

a5a3 K
a2

+ a6(a1 K + 1)
}
,

l0 = −a6 K < 0.

Since, l0 < 0 which guarantees that for l1 > 0, l2 > 0, l3 > 0, there exists a positive real root x∗. At the

equilibrium E∗, all three cells exists and it is regarded as an interior equilibrium.

In order to check the linear stability of the system (2.2) we use the classical Jacobian matrix and eigenvalues

concepts. The Jacobian matrix for the system (2.2) is given by

VE =

⎛⎝v11 v12 0
v21 v22 v23
v31 v32 v33

⎞⎠ , (3.3)

where v11 = a1 − 2a1x − y, v12 = −x , v21 = −a4 y, v22 = a2ze−mδ
− a3 − a4x , v23 = a2 ye−mδ , v31 =

a8zK
(K+x)2 ,

32 = −a6z, and v33 = a5 − 2a5z − a6 y − a7 +
a8x

K+x .

I. The eigenvalues of (3.3) corresponding to E1 are m1
1 = −

√
1 +

4
a1

(< 0), m1
2 = −a3 −

a4
2 (1+

√
1 +

4
a1

)(< 0),

and m1
3 = a5 − a7 +

a8
2 (1+

√
1+

4
a1

)

1
2 (1+

√
1+

4
a1

)+K
(> 0) as a5 > a7. Hence, the tumour-persistent equilibrium E1(x1, 0, 0)

with x1 =
1
2 (1 +

√
1 +

4
a1

) is always a saddle point.

II. At the tumour-persistent equilibrium point E2, the eigenvalues of (3.3) are m2
1 = −

√
1 +

4
a1

(< 0), m2
2 =

−a5 − 2a5z2 − a7 +
a8x2

K+x2
, and m2

3 = a2z2 − a3 − a4x2. The equilibrium E2 is locally asymptotically stable
if m2

2 < 0 H⇒ a2z2 < a3 + a4x2 and m2
3 < 0 H⇒

a8x2
K+x2

< a5 + 2a5z2 + a7.
III. It is already reported in [25] that the interior equilibrium E∗ is globally asymptotically stable in the interior

of the positive octant of T H R space in the absence of discrete-time delay, i.e., δ = 0. Now, we will explore

the effect of discrete-time lag on the system (2.2) when all three cells co-exist, i.e., the dynamical behaviour

of system (2.2) around the interior equilibrium E∗(x∗, y∗, z∗). For the case of discrete-time lag δ ̸= 0, the

characteristic equation of the linearized system around E∗(x∗, y∗, z∗) can be written as

P(m) + Q(m)e−mδ
= 0, (3.4)

where

P(m) = m3
+ p1m2

+ p2m + p3,

2

}

Q(m) = q1m + q2m + q3,
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with

p1 = 2a1x∗
− a1 + y∗

+ a3 + a4x∗
− a5 + 2a5z∗

+ a6 y∗
+ a7 −

a8x∗

K + x∗
,

p2 = (a1 − 2a1x∗
− y∗)

(
a5 − a3 − a4x∗

− 2a5z∗
− a6 y∗

− a7 +
a8x∗

K + x∗

)
−

(
a5 − 2a5z∗

− a6 y∗
− a7 +

a8x∗

K + x∗

)
(a3 + a4x∗) − a4x∗y∗,

p3 = (a1 − 2a1x∗
− y∗)(a3 + a4x∗)

(
a5 − 2a5z∗

− a6 y∗
− a7 +

a8x∗

K + x∗

)
+ a4x∗y∗

(
a5 − 2a5z∗

− a6 y∗
− a7 +

a8x∗

K + x∗

)
,

q1 = −a2z∗,

q2 = (a1 − 2a1x∗
− y∗)a2z∗

+
(
a5 − 2a5z∗

− a6 y∗
− a7 +

a8x∗

K + x∗

)
a2z∗

+ a2a6 y∗z∗,

q3 = a2a8x∗y∗z∗
K

(x∗ + K )2 − a2z∗(a1 − 2a1x∗
− y∗)(a5 − 2a5z∗

− a6 y∗
− a7 +

a8x∗

K + x∗
)

− (a1 − 2a1x∗
− y∗)a2a6 y∗z∗.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
In absence of time lag (δ = 0), the characteristic Eq. (3.4) corresponds to interior equilibrium E∗ becomes

m3
+ (p1 + q1)m2

+ (p2 + q2)m + (p3 + q3) = 0, (3.5)

where
p1 = 2a1x∗

− a1 + y∗
+ a2z∗

+ a5z∗,

p2 = −(a1 − 2a1x∗
− y∗)(a2z∗

+ a5z∗) + a2a5z∗2
− a4x∗y∗,

p3 = −(a1 − 2a1x∗
− y∗)(a2a5z∗2) − a4a5x∗y∗z∗,

q1 = −a2z∗,

q2 = (a1 − 2a1x∗
− y∗)a2z∗

− a2a5z∗2
+ a2a6 y∗z∗,

q3 = a2a8x∗y∗z∗
K

(x∗ + K )2 + a2z∗(a1 − 2a1x∗
− y∗)(a5z∗

− a6 y∗).

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
The Routh–Hurwitz criterion states that E∗ is asymptotically stable if the roots of the characteristic Eq. (3.5)
are negative or have negative real parts, i.e., for χ1 = p1 + q1 > 0, χ2 = p3 + q3 > 0, and χ3 =

χ1(p2 + q2) − χ2 > 0, equilibrium E∗ is asymptotically stable.
Therefore,

χ1 = 2a1x∗
− a1 + y∗

+ a2z∗
+ a5z∗

− a2z∗ > 0,

χ2 = a2a8x∗y∗z∗
K

(x∗ + K )2 + a2z∗(a1 − 2a1x∗
− y∗)(a5z∗

− a6 y∗) − (a1 − 2a1x∗
− y∗)(a2a5z∗2)

− a4a5x∗y∗z∗ > 0,
χ3 =

[
2a1x∗

− a1 + y∗
+ a2z∗

+ a5z∗
− a2z∗

] [
(a1 − 2a1x∗

− y∗)a2z∗
− a2a5z∗2

+ a2a6 y∗z∗

− (a1 − 2a1x∗
− y∗)(a2z∗

+ a5z∗) + a2a5z∗2
− a4x∗y∗

]
−

[
a2a8x∗y∗z∗

K
(x∗ + K )2

+ a2z∗(a1 − 2a1x∗
− y∗)(a5z∗

− a6 y∗) − (a1 − 2a1x∗
− y∗)(a2a5z∗2)

− a4a5x∗y∗z∗
]
> 0.

Now, we will explore the discrete-time delay (δ ̸= 0) effect on the system (2.2). First, we will investigate the
switching nature of systems’ stability due to the presence of discrete-time lag δ. In order to examine whether
there exists a periodic solution or not for the system (2.2) considering δ as the bifurcating parameter, we
substitute m = ιω (ω > 0) into (3.4) and by separating the imaginary and real parts, we get

ω3
− p2ω = q2ωcos(ωδ) − (q3 − q1ω

2)sin(ωδ),
2 2

}
(3.6)
p1ω − p3 = (q3 − q1ω )cos(ωδ) + q2ωsin(ωδ),
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T

P

For computing ω, we square both sides of (3.6) and add the equations. This yields

ω6
+ κ1ω

4
+ κ2ω

2
+ κ3 = 0, (3.7)

where

κ1 = p2
1 − 2p2 − q2

1

=

[
2a1x∗

− a1 + y∗
+ a3 + a4x∗

− a5 + 2a5z∗
+ a6 y∗

+ a7 −
a8x∗

K + x∗

]2

− 2
[

(a1 − 2a1x∗
− y∗)

(
a5 − a3 − a4x∗

− 2a5z∗
− a6 y∗

− a7 +
a8x∗

K + x∗

)
−

(
a5 − 2a5z∗

− a6 y∗
− a7 +

a8x∗

K + x∗

)
(a3 + a4x∗) − a4x∗y∗

]
−[a2z∗]2,

κ2 = p2
2 − 2p1 p3 + 2q1q3 − q2

2 ,

κ3 = p2
3 − q2

3 .

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
From our general observation, it is obvious that for κ1 > 0 and κ3 < 0, Eq. (3.7) will have a positive root.
From the above conditions, it is obvious that there is a unique non-negative root ω0 satisfying Eq. (3.7),
i.e., the characteristic polynomial (3.4) has a pair of purely imaginary roots in the form ±ιω0. Solving both
the equations of (3.6), we have

tan(ωδ) =
q2ω(p1ω

2
− p3) − (ω3

− p2ω)(q3 − q1ω
2)

(p1ω2 − p3)(q3 − q1ω2) + q2ω(ω3 − p2ω)
.

Then,

δ f =
1
ω0

arctan
[

q2ω0(p1ω
2
0 − p3) − (ω3

0 − p2ω0)(q3 − q1ω
2
0)

(p1ω
2
0 − p3)(q3 − q1ω

2
0) + q2ω0(ω3

0 − p2ω0)

]
+

2 f π
ω0

, f = 0, 1, 2, 3, . . . (3.8)

For δ f = 0, the interior equilibrium point E∗ is locally asymptotically stable, provided χ1 = p1 + q1 > 0,
χ2 = p3 + q3 > 0, and χ3 = χ1(p2 + q2) − χ2 > 0. Hence, by the well-known Butler’s lemma, E∗ will
remain stable for 0 < δ < δ0, where δ f = δ0 at f = 0. This implies that once the time delay traverses a
given threshold value, the immune system will not be able to control the tumour cell growth. As a result, the
patient’s body begins to lose stability with the fast proliferation of malignant tumour cells.

4. Hopf bifurcation analysis

In this section, we will first derive the transversality conditions d(Re(m))
dδ |δ=δ f > 0 for Hopf bifurcation of (2.2)

at δ = δ0 such that Eq. (3.4) has a pair of purely imaginary roots. For this, we have to establish the direction of
motion of δ when δ f is increased and hence we need to evaluate the following expressions:

Φ = sign
[

d(Re(m))
dδ f

]
m=ιω0

= sign
[

Re
(

d(m)
dδ f

)−1]
m=ιω0

.

heorem 4.1. For the system (2.2), if the interior equilibrium E∗ exists then

(i) for δ ∈ [0, δ0), E∗ is asymptotically stable,
(ii) E∗ is unstable if δ > δ0,

(iii) E∗ undergoes Hopf bifurcation around E∗ if δ = δ0.

roof. Differentiation of (3.4) with respect to δ leads to

[(3m2
+ 2p1m + p2) + (2q1m + q2)e−mδ f −(q1m2

+ q2m + q3)δe−mδ f ]
d(m)
dδ f

−mδ f 2

= me (q1m + q2m + q3),
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b
t

T

∫
s

w

a

which implies[
d(m)
dδ f

]−1

=
2m3

+ p1m2
− p3

−m2(m3 + p1m2 + p2m + p3)
+

q1m2
− q3

m2(q1m2 + q2m + q3)
−
δ f

m
.

Thus,

Φ =sign
[

Re
(

2m3
+ p1m2

− p3

−m2(m3 + p1m2 + p2m + p3)
+

q1m2
− q3

m2(q1m2 + q2m + q3)
−
δ f

m

)]
=

1
ω2

0
sign

[
(p1ω

2
0 + p3)(p1ω

2
0 − p3) + 2ω3

0(ω3
0 − p2ω0) + (q1ω

2
0 + q3)(q3 − q1ω

2
0)

q2
2ω

2
0 + (q3 − q1ω

2
0)2

]
=

1
ω2

0
sign

[
2ω6

0 + ω4
0(p2

1 − 2p2 − q2
1 ) + (q2

3 − p2
3)

q2
2ω

2
0 + (q3 − q1ω

2
0)2

]
.

Therefore, the transversality condition d(Re(m))
dδ |δ=δ f ,ω=ω0 > 0 holds as p2

1−2p2−q2
1 > 0 and q2

3 −p2
3 > 0 by virtue

of κ1 > 0 and κ3 > 0. It indicates that the stability switches from stable to unstable through a Hopf bifurcation
δ = δ f = δ0. Hence, we can report that the stability of our considered tumour-immune model is significantly
affected by the discrete-time delay δ ̸= 0. The stable interior equilibrium E∗ where all the three cells exist, loses
its stable nature because of the appearance of Hopf bifurcation at δ = δ0 and becomes unstable for δ > δ0 when
we varied the parameter δ. □

In the above, we already reported that the system (2.2) has a periodic solution. Here, we investigate whether the
ifurcating periodic solution is stable or not; and if stable, we will compute the length of time lag for preserving
he limit cycle’s stability. First, we linearize the system (2.2) around the interior equilibrium E∗(x∗, y∗, z∗), which

gives us
dx
dt

= (a1 − 2a1x∗
− y∗)x − x∗y,

dy
dt

= −a4 y∗x + a2z∗y(t − δ) − (a3 + a4x∗)y + a2 y∗z(t − δ),

dz
dt

=
a8z∗K

(K + x∗)2 x − a6z∗y + (a5 − 2a5z∗
− a6 y∗

− a7 +
a8x∗

K + x∗
)z.

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
(4.1)

aking Laplace transformation of (4.1), we get

(ζ + y∗
+ 2a1x∗

− a1)Sx (ζ ) = −x∗Sy(ζ ) + x̄(0),

(ζ + a3 + a4x∗
− a2z∗e−ζ δ)Sy(ζ ) = −a4 y∗Sx (ζ ) + a2 y∗e−ζ δSz(ζ )+

a2 y∗e−ζ δFz(ζ ) + a2z∗e−ζ δFy(ζ ) + ȳ(0),

(ζ + 2a5z∗
+ a6 y∗

+ a7 − a5 −
a8x∗

K + x∗
)Sz(ζ ) =

a8z∗K
(K + x∗)2 Sx (ζ ) − a6z∗Sy(ζ ) + z̄(0),

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
where Sx (ζ ), Sy(ζ ), and Sz(ζ ) are the Laplace transformation of x(t), y(t) and z(t) respectively. Also, Fy(ζ ) =

0
−δ

e−ζ t y(t)dt , and Fz(ζ ) =
∫ 0
−δ

e−ζ t z(t)dt .
According to Freedman et al. [23] and classical Nyquist criteria [32], the interior equilibrium E∗ is asymptotically

table for

Re[H (ιµ0)] = 0, (4.2)

I m[H (ιµ0)] > 0, (4.3)

ith

H (ζ ) = ζ 3
+ p1ζ

2
+ p2ζ + p3 + e−ζ δ(q1ζ

2
+ q2ζ + q3),

nd µ0 > 0 is the minimal non-negative root of the above expressions (4.2) and (4.3).
The explicit form of expressions (4.2) and (4.3) are

2 2

− p1µ0 + p3 = −q2µ0sin(µ0δ) − (q3 − q1µ0)cos(µ0δ), (4.4)
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a

− µ3
0 + p2µ0 > (q3 − q1µ

2
0)sin(µ0δ) − q2µ0cos(µ0δ). (4.5)

Eqs. (4.4) and (4.5) are the sufficient criterion for the stability of interior equilibrium point E∗. We assume an
upper bound µ+ on µ0 not dependent on δ, such that Eq. (4.5) is satisfied for all values of µ, 0 ≤ µ ≤ µ+ at
µ = µ0.

Expression (4.4) leads to

p1µ
2
0 = p3 + q2µ0sin(µ0δ) + q3cos(µ0δ) − q1µ

2
0cos(µ0δ). (4.6)

Using the bounds |cos(µ0δ)| ≤ 1, and |sin(µ0δ)| ≤ 1; Eq. (4.6) yields

|p1|µ
2
0 ≤ |p3| + |q2|µ0 + |q3| + |q1|µ

2
0.

Therefore,

µ+ ≤
1

2(|p1| − |q1|)

[
|q2| +

√
q2

2 + 4(|p1| − |q1|)(|p3| + |q3|)
]
, (4.7)

lso, from (4.7), µ0 ≤ µ+.
The inequality (4.5) gives us

µ2
0 < p2 + q2cos(µ0δ) + q1µ0sin(µ0δ) −

q3sin(µ0δ)
µ0

. (4.8)

In case of δ = 0, the inequality (4.8) becomes

µ2
0 < p2 + q2,

nd from (4.6),

p1µ
2
0 = p3 + q3 − q1µ

2
0

H⇒ µ2
0 =

p3 + q3

p1 + q1
.

Therefore, at δ = 0, E∗ is asymptotically stable if (p3 + q3) < (p1 + q1)(p2 + q2) holds.
Now, for small δ > 0, from (4.6) and (4.8), we get

(q3 − q1δ
2
0 − p2q2)

[
cos(µ0δ) − 1

]
+

[
(q2 − p1q1)µ0 +

p1q3

µ0

]
sin(µ0δ)

< p1 p2 − p3 + p1q2 − q3 + q1µ
2
0,

which yields

(q3 − q1δ
2
0 − p2q2)

[
cos(µ0δ) − 1

]
+

[
(q2 − p1q1)µ0 +

p1q3

µ0

]
sin(µ0δ)

< (p1 + q1)(p2 + q2) − (p3 + q3).
(4.9)

Using the bounds, we obtain

(q3 − q1δ
2
0 − p2q2)

[
cos(µ0δ) − 1

]
= 2(q1µ

2
0 + p1q2 − q3)sin2(µ0δ

2

)
≤

1
2
µ2

+
|(q1µ

2
+

+ p1q2 − q3)|δ2,

and [
(q2 − p1q1)µ0 +

p1q3

µ0

]
sin(µ0δ) ≤

[
|(q2 − p1q1)|µ2

+
+ |p1||q3|

]
δM .

From (4.9), we obtain that

L1δ
2
+L2δ ≤ L3

H⇒ δ+ =
1

[
−L2 +

√
L2

2 + 4L1L3

]
,

⎫⎬⎭

2L1
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Fig. 2. Time series evolution curve and parametric plot of the system (2.2) around the equilibrium E∗(0.20, 6.55, 0.87) for δ = 0.23 < 0.269
ith initial conditions x(0) = 1, y(0) = 1, z(0) = 1. The trajectory of the system (2.2) approaches to the stable equilibrium E∗.

Fig. 3. Time series evolution curve and parametric plot of the system (2.2) around the equilibrium E∗(0.20, 6.55, 0.87) for δ = 0.269 with
nitial conditions x(0) = 1, y(0) = 1, z(0) = 1. The trajectory of the system (2.2) approaches to the stable equilibrium E∗.

Fig. 4. (a) It represents Tmax vs δ. Each plot is of z solution component of the system (2.2). (b) It shows stability(colour:green) and
nstability (colour:red) region for the system (2.2). All the computations have been performed with initial condition x(0) = 1, y(0) = 1,
z(0) = 1.
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Fig. 5. Time series evolution curve and parametric plot of the system (2.2) around the equilibrium E∗(0.20, 6.55, 0.87) for δ = 0.31 > 0.269
ith initial conditions x(0) = 1, y(0) = 1, z(0) = 1. The system (2.2) exhibits periodic oscillations and limit cycle solution.

Fig. 6. Time series evolution curve and parametric plot of the system (2.2) around the equilibrium E∗(0.20, 6.55, 0.87) for δ = 20 ≫ 0.269
ith initial conditions x(0) = 1, y(0) = 1, z(0) = 1. The system (2.2) initiates aperiodic behaviour and unstable nature.

here,

L1 =
1
2
|(q1µ

2
+

+ p1q2 − q3)|µ2
+
,

L2 =

[
|(q2 − p1q1)|µ2

+
+ |p1||q3|

]
,

L3 = (p1 + q1)(p2 + q2) − (p3 + q3).

Hence, the Nyquist criterion holds if 0 ≤ δ ≤ δ+, and the periodic solution preserves the limit cycle’s stability
for the maximum length of time lag δ .
+
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Fig. 7. Time series evolution curve and parametric plot of the system (2.2) around the equilibrium E∗(0.20, 6.55, 0.87) for δ = 45 ≫ 0.269
ith initial conditions x(0) = 1, y(0) = 1, z(0) = 1. The system (2.2) initiates more aperiodic behaviour and unstable nature.

. Numerical simulation

Based on the above theoretical outcomes, we will present some numerical computations of the proposed tumour
odel in this section. We define the parameters and units arbitrarily, as used in Refs. [25]. At first, we investigate

he dynamics of the model with the variation of a discrete-time lag δ. For this purpose, we consider the parameter
et as: a1 = 1.82, a2 = 0.239, a3 = 0.2, a4 = 0.04, a5 = 0.0691, a6 = 0.05, a7 = 0.01, a8 = 2, and K = 1.
onsidering the mentioned parameter set, we found three biologically feasible equilibrium points: E1(1.39, 0, 0),

E2(1.39, 0, 17.70), and E∗(0.20, 6.55, 0.87). The eigenvalues corresponding to the equilibrium E1 are −3.24, −0.26,
nd 1.22. Hence, E1 is a point of unstable saddle type. The equilibrium E2 has eigenvalues of −3.24, 3.98, and
1.22; which correspond to an unstable saddle point. For δ = 0 the eigenvalues correspond to interior equilibrium

E∗ are −5.48, −0.016 ± 0.37ι; which suggests that E∗ is a stable inward spiral. For δ ̸= 0, the stability of E∗

epends on κ1, κ2, κ3 and ω. For the set of parameters a1 = 1.82, a2 = 0.239, a3 = 0.2, a4 = 0.04, a5 = 0.0691,
6 = 0.05, a7 = 0.01, a8 = 2, K = 1; the value of κ1 = 29.77 > 0, κ2 = −0.154 < 0, and κ3 = −0.46 < 0.
herefore, Eq. (3.7) has a unique positive real root ω0 ≈ 0.36; hence Eq. (3.8) yields δ0 ≈ 0.2693. It is also
onfirmed that the transversality condition for Hopf bifurcation d(Re(m))

dδ |δ=δ0,ω=ω0 = 11.38 > 0, which guarantees
he occurrence of Hopf bifurcation at δ0 = 0.269. Thus, from Proposition 4.1, we can achieve a Hopf bifurcation
t δ0 = 0.269 for the model (2.2) and the equilibrium E∗ is stable for 0 ≤ δ < 0.269. These two situations can
e observed from Fig. 2 for δ = 0.23 < 0.269 and Fig. 3 for δ0 = 0.269. The stability of model (2.2) changes
s time-delay δ crosses the threshold value δ0 ≈ 0.269, and system (2.2) exhibits regular periodic oscillations
o irregular long periodic oscillations. Fig. 5 illustrates that for δ = 0.31 > 0.269, there exist regular periodic
scillations for the system (2.2) corresponds to the initiation of a limit cycle. Fig. 6 for δ = 20 and Fig. 7 for
= 45 demonstrates that for large values of delay δ, the system (2.2) shows chaotic like nature with an irregular

attern of each cell population. We have also calculated the length of the maximum time lag δ+ ≈ 0.61 for which
he system (2.2) preserves the limit cycle solution.

The discussions that have taken place above are extremely interesting and relevant in real life from a biological
tandpoint. If the growth process of hunting T-cells in the patient’s body increases gradually, the immune system
an stabilize the growth of tumour cells. If there is only a slight delay in the growth process, the patient’s immune
ystem can still control the growth of tumour cells. However, after a certain amount of time has passed, all three
ells compete with one another, resulting in a Hopf bifurcation. Despite this, because of the significant delay in
he growth process, the patient’s immune system will not control tumour growth, and the patient’s condition will

eteriorate further.
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Fig. 8. Time series solution and parametric plot of the system (2.2) for a5 = 0.191 with initial conditions x(0) = 1, y(0) = 1, z(0) = 1.
The system (2.2) exhibits irregular periodic oscillations and unstable solution.

Fig. 9. Time series solution and parametric plot of the system (2.2) for a5 = 0.358 with initial conditions x(0) = 1, y(0) = 1, z(0) = 1.
The system (2.2) exhibits periodic oscillations and limit cycle solution.

Fig. 4 presents Hopf-bifurcation of the z-solution component of the system (2.2) with respect to the bifurcating
parameter δ and the stability region is given under (δ, a5) ∈ [01., 0.3] × [0.01, 0.05]. In the bifurcation diagram, it
can be observed that the dynamics of the system (2.2) changes from a stable-to-unstable state and then to a stable
state.

Now, we consider a patient with a time-delay in the growth process of hunting T-cells δ = 20 > 0.269. We fixed
he other parameters as a1 = 1.82, a2 = 0.239, a3 = 0.2, a4 = 0.04, a6 = 0.05, a7 = 0.01, a8 = 2, K = 1 and
aried the growth rate of resting T-cells, i.e., the parameter a5. It is clearly observed from Fig. 6, with a5 = 0.0691
nd δ = 20, the system (2.2) shows irregular long periodic oscillations, i.e., the patients’ condition is unstable.

Fig. 8 demonstrates that if the growth rate of resting T-cells a5 = 0.191, the system is still unstable and aperiodic.
From Fig. 9, if the patient’s body has the growth rate of resting T-cells a5 = 0.358 then regular periodic solutions

ccurs for the system (2.2) which indicates that the initiation of limit cycles.
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Fig. 10. Time series solution and parametric plot of the system (2.2) for a5 = 0.391 with initial conditions x(0) = 1, y(0) = 1, z(0) = 1.
he system (2.2) undergoes a stable position through an inward spiral.

Fig. 11. Time series solution and parametric plot of the system (2.2) for a5 = 0.691 with initial conditions x(0) = 1, y(0) = 1, z(0) = 1.
he system (2.2) converges to stable position.

It can be observed from Fig. 10 that if the growth rate of resting T-cells is increased, i.e., if a5 = 0.391, then
he immune system can control the tumour growth, and the body becomes stable.

Fig. 11 shows that if the patient’s body has a high growth rate of resting T-cells, i.e., a5 = 0.691 then it assures
hat the immune system is strong enough to suppress the tumour growth at the very initial stage and that the body
ets back to a healthy condition.

. Conclusion

This study has proposed a prey–predator type nonlinear time-delay system consisting of three cell populations,
amely tumour cells, hunting T cells, and resting T cells, to describe the effect of discrete-time delayed in tumour–
mmune interactions. At each equilibrium point of the system, linear stability analyses have been performed, and
682
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the results show that the system undergoes a Hopf bifurcation under the effect of time delay. The system is also
reported to show periodic solutions for a specific time delay, indicating the existence of limit cycles. The biological
point of view reveals that the continuous growth process of hunting T-cells is beneficial for the immune system to
stabilize tumour growth. Furthermore, a smaller delay in the growth process does not affect the system’s stability,
and the immune system still controls tumour growth. However, the system loses stability when, after a significant
delay, all three cells begin competing, resulting in a Hopf bifurcation. The growth rate of resting T-cells has also
been simulated numerically by varying the parameter a5. By increasing the value of the parameter a[5], the system
hows stable behaviour. The study suggests that resting T-cell growth is also critical for stabilizing tumour cells.

primary limitation of our paper is that we assumed theoretical parameter values in our numerical simulations.
owever, medical data can be used to verify our theoretical results. Furthermore, the model can be extended to
more nonlinear one by taking the conversion term of hunting T-cells to resting T-cells as a Michaelis–Menten

inetic response.
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