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The main purpose of the present paper is to conduct a detailed and thorough study on the Korteweg-
de Vries—Caudrey-Dodd-Gibbon (KdV-CDG) dynamical model. More precisely, after considering the inte-
grable KdV-CDG dynamical model describing certain properties of ocean dynamics, its conservation laws,
solitons, and complexiton are respectively derived using the Ibragimov, Kudryashov, and Hirota methods.
Several numerical simulations in two and three-dimensional postures are formally given to analyze the
effect of nonlinear parameters. It is shown that nonlinear parameters play a key role in the dynamical
properties of soliton and complexiton solutions.
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1. Introduction

The search for solitons of nonlinear partial differential equa-
tions (NLPDEs) plays a fundamental role in a wide variety of non-
linear sciences, as such a class of solutions is capable of giving
helpful information regarding the phenomena under investigation.
Researchers have devoted much effort to constructing new meth-
ods for obtaining solitons of NLPDEs. Some of the methods that
have been able to attract the attention of many researchers are the
modified Jacobi method [1-4], the exponential method [5-8], and
the Kudryashov methods [9-15]. Nowadays, Kudryashov methods,
as pioneer approaches, are frequently used to extract solitons of
many NLPDEs. Very newly, Hosseini et al. [16] applied successfully
Kudryashov methods to derive solitons of a fifth-order nonlinear
water wave equation that are classified as W-shaped and bright
solitons.

Today, many researchers deal with Lie groups and conservation
laws of NLPDEs [17-22] which play a significant role in the solu-
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tion process of differential equations. As it turns out, researchers
face problems in applying Noether’s theorem as Euler-Lagrange
equations are not available for all differential equations. To over-
come this shortcoming, Ibragimov [23] proposed a new conserva-
tion theorem that is based on the formal Lagrangian equation, and
conservation laws are related to Lie symmetries. Here are some
recent papers on the conservation laws of NLPDEs. Arnous et al.
[24] obtained conservation laws of the Chen-Lee-Liu equation us-
ing the new conservation theorem. Akbulut et al. [25] employed
the new conservation theorem to acquire conservation laws of the
(3 + 1)-dimensional Wazwaz-KdV equations.

The main purpose of the present paper is to conduct a detailed
and thorough study on the following KdV-CDG model [26-31]

1 1
U + ¢y (uxx + fuz) + Cz<—u3 + Ul + uxxxx) =0, (1)
5° ), 15 x

describing certain properties of ocean dynamics, and obtain its
conservation laws, solitons, and complexiton. Eq. (1) as a nonlinear
evolutionary equation includes the KdV and CDG equations which
have useful applications in nonlinear sciences. Wazwaz [26] uti-
lized Hirota’s bilinear method to construct multiple solitons of the
KdV-CDG model. Biswas et al. [27] extracted soliton and other
solutions of the KdV-CDG model through several effective meth-
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ods. Tu et al. [28] applied Hirota and Riemann methods to derive
quasi-periodic and solitary waves of the KdV-CDG model. Akbar
et al. [29] found a variety of solitons to the KdV-CDG model using
the modified auxiliary equation method. Asjad et al. [30] exerted
the hyperbolic function method to derive solitons of the KdV-CDG
model. Ma et al. [31] constructed soliton molecules, asymmetric
solitons, and hybrid solutions of the KdV-CDG model by consid-
ering its N-soliton solutions and applying the velocity resonance
method.

The rest of the present paper is as follows: In Section 2, a de-
tailed review of the Ibragimov and Kudryashov methods is given.
In Section 3, conservation laws, solitons, and complexiton of the
KdV-CDG model are derived. Furthermore, Section 3 presents sev-
eral numerical simulations in two and three-dimensional postures
to analyze the effect of nonlinear parameters in the dynamics of
soliton and complexiton solutions. The achievements are reviewed
in the last section.

2. Ibragimov and Kudryashov methods: basic ideas

In the current section, the authors are interested in a detailed
review of the Ibragimov and Kudryashov methods and their basic
ideas.

2.1. Ibragimov method

Conservation theorem: Let us consider
F(u,uy,us,...) =0, (2)

as a NLPDE where F is a polynomial.
For Eq. (2), the Lie point symmetry generator is

a a ad
— &£X e— t —_— i
X=£ (x,t,u)ax +&M(x t, u)at +n(x,t,u)au, (3)

where £%(x,t,u), £'(x,t, u) and n(x, t,u) are the infinitesimals. For
Eq. (3), the kth prolongation of Eq. (3) is obtained as [32, 33]

0 d
X0 x4 np® = 4 40 k>1
+ 771 aui + + r/mz...lk auiliz.“ik k=1,
where
0" =Din — (Dig)u;,

& _p. kD CENy . .
niliz.“ik - len - (legj)uhlzmlkq]'

i i
The formal Lagrangian is obtained by
L = wWF,

where w(x,t,u) is the adjoint variable. Additionally, the adjoint
equation is derived as
oL
F*=—, 4
U (4)

where B‘S—u is the variational derivative.
Solving Eq. (4) results in conservation laws of Eq. (2).
Definition: Eq. (2) is said to be nonlinearly self-adjoint if there
exists a function [34, 35]

w=¢(x,t,ukxt))#0,
satisfying
F* = A(x,t,u(x, t))F, (5)

where A is an undetermined coefficient. If we take w = ¢(u) in
Eq. (5), Eq. (2) is called quasi self-adjoint. If we take w = u, we say
that Eq. (2) is strictly self-adjoint.
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Theorem 1. Every Lie point, Lie-Bdcklund, and nonlocal symmetry of

Eq. (2) yields a conservation law. The conserved vector components
are acquired by [18, 19]

-~ oL (oL (L
T = é: L+W|:8Ll, _Dj<8uij> +D]Dk<auijk) - i|
oL aL
+D,~(W)[auij —Dk(auijk> + - }

+DjDk<W)[aifjJ TR (6)

where W:r;—i—‘fuj. The conserved vectors extracted by
Eq. (6) contain the arbitrary solutions of the adjoint equation.
Consequently, some conservation laws for Eq. (2) are retrieved by
w(x, t, u).

Theorem 2. Generated conserved vectors using Eq. (6) are conserva-
tion laws of Eq. (2) if [17]

Di(T) =0.
2.2. Kudryashov methods

The KM I applies the following finite series

U(e) = ap+ a1K(&) + azK?(e) + ...+ aykN(e), ay #0, (7)
as the solution of
0(U(e),U'(e),U"(e),...) =0. (8)

In the above equation, g;,i=0,1,...,N are retrieved later, N is

derived by the balance principle, and K(¢) is of the form
1
K()= ——
) 1+4da®’

which satisfies

K'(¢) =K(e)(K(e) — 1) In(a).

Based on Eqs. (7) and (8), a nonlinear system of algebraic type
is obtained, and by solving it, solitons of Eq. (8) are derived.

The series solution of KM II is the same as that considered in
KM 1. But, KM II benefits from considering

1

(A—B)sinh (¢) + (A+B)cosh (¢)’
as the solution of
(K'(£))* = K2(e) (1 — 4ABK2(e)).

In a similar way to what was performed before, solitons of
Eq. (8) are constructed.

K(e) =

3. KdV-CDG model: its conservation laws, solitons, and
complexiton

In the current section, conservation laws, solitons, and com-
plexiton of the KdV-CDG model are derived. Furthermore, several
numerical simulations in two and three-dimensional postures are
presented to analyze the effect of nonlinear parameters in the dy-
namics of soliton and complexiton solutions.

3.1. KdV-CDG model and its conservation laws

Based on the conservation theorem, the formal Lagrangian can
be written as

L:W(ut+c1 (uxx-i-luz) +c2<lu3+uuxx+uw> ) (9)
57 Jx 15 x

where w denotes the adjoint variable.
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The adjoint equation is acquired by employing the variational

derivative as
Froo= —(We+ o (Wi + 2witt)

10
+C2(%u2Wx + 2Wixllxy + ZWrxlx + UWyx + WXX"XX))' 1o

If we replace u by w in Eq. (10), then Eq. (1) is not obtained.
Thus, the KdV-CDG model is not self-adjoint.
By considering w = ¢ (x, t, u(x, t)), its derivatives are given by

We = Gulle + @,
Wx = @ulix + Px,

Wi = Qullxx + ¢uuu£ + 2huxlix + Pxx,

Substituting derivatives of ¢ into Eq. (10) without ignoring
Eq. (5) yields

2 1
F* = —C1@xx — C2Prxxxx — gcl UxUepy — §C2u2ux¢u

2
—3cutixPxxu — 3C2 uuy Pruuu

—C2UU,3(¢uuu — AcyUxlx@Py — 3C2UUNPx
— CoUlxx Py — Pr — 3C1UxPxau — 3C1 u)2(¢xuu

3 2
- ux¢uuu — 5C2Ux@Prxxxu — 10C2ux¢xxxuu
3 4 5
_1OC2ux¢xxuuu - Sczux¢xuuuu - C2ux¢uuuu

_3C1 uxx(pxu - Cl uxxx‘Pu - 10C2uxx¢xxxu - 10C2uxxx¢xxu
_5C2uxxxx¢xu - Czuxxxxx(pu

2
—15C U Pxun — Ur@Pu — 3CoUU U DUy
—15¢ouxti2 Puuy — 106213 U
2UxUxxPuuu 2 Uy UxxPuuuu

2
—10¢ U UxxxPuun — 10C2 UnxUxaxPuu — 2C2UxxPx — 3C1 UxUxxPuu
—30C2UxUxxPrxuu

2
2
_3OC2uXuxx¢xuuu - 2OC2uxuxxx¢xuu - 5C2uxuxxxx¢uu - gcl u¢x

1
- 562U2¢x — 2CoUxPxx

1
—4C2u£¢xu - 262u3¢uu — CUPxx = A(Ur + €1 (Uxx + guz)x

1
+C2(Eu3 + Ullxx + uxxxx)x)~

By comparing the coefficients of all derivatives, it is found that

¢xu = 07

[m5G;June 24, 2022;9:16]
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Table 1
The commutator table for the acquired symmetries.
X, X1 X Xz X3
X 0 0 — X+ X
X, 0 0 X
X 24 Xy — X lx, 0
3 250,02 T T 5A2
¢y =0.
As a consequence, one can say that
¢ =01

where o7 is a constant. Therefore, w = 1 can be considered for ob-
taining finite conservation laws.

If we apply the fifth-order Lie symmetry generator to Eq. (1),
the following infinitesimals are derived:

&' =01 +ost,

2
4cy

1
X _ —X — -
& _02+a3<5x 25c2t>’

_ G(2c2u+261)
n=—-03 5, )

where o (j =1,2,3) are constants. As a result, the Lie point sym-

metry generators admitted by Eq. (1) are obtained as follows

X, = 2 x,—2 x,—(lx_2i;)o
1 - 3 N2 T Hxr M3 T\ 5 25¢, ax

9 _ (2cu+2c) 9
+tW ( 5¢; )au'

The commutator table for the acquired symmetries has been
given in Table 1.
Conservation laws of Eq. (1) can be formulated as follows

)
LWl D) -2
4

™ = Dy BL“XX Qe
+DX (Buxmx)]
+Dx(W)[ L — De(72) - D (5]
+D; W) s + D3 (7)) ]
3 oL 4 oL
w0z -0t ) | otom | 5| g
Tt=§tL+W[§5]. (12)
t

Case 1: From Egs. (9), (11), and (12) as well as Xj, the following
local conservation laws are constructed

2 1
2
T]x = _W<§Cl llut—‘,—ngu Ut +CoUUxx+C1Uxxt + CoUlxxe + C2”xxxxt>

— Wy (Czutux_cl Uy — C2uuxt - C2uxxxt)_Wxx (Cl Ut + C2uut+C2uxx[)
—Co Ut Wyxxx + CoUxt Wxxx,

t 2 1 2
T :W(Cl Uxx + guux +C2<§u uX+uXuXX+quXX+uXXXXX>)1

and we have

Dx(Ty) + D (T{) = uewe — weu = 0.
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It is clear that the divergence condition is satisfied.
Assuming w = 1 leads to

~ 2 1,
T = —c1( Uxxe + Ul | — Co GUTUe + Urlher + Ul + uxxxxt),

Tt = ¢, (u +guu +c 1y + Uylyy + Ullyey + U
1 = L1 Yaxx 5 X 25 X xUxx XXX XXXXX | 5

and DX(TNIX) +Dt(f{) = 0. If we transfer some terms from ﬁ" to TN{,
zero trivial conservation laws are obtained.
Case 2: From Egs. (9), (11), and (12) as well as X5, the following

local conservation laws are established
T = Wt — Wy (ol — C1llxy — Collllyx — Collyexr)

—Wxx (C1lx + CoUlly + Collxxx) — CoUxWaxxx + C2UxxWixx,

t
T, = —wuy,.

It can be demonstrated that the divergence condition is satis-
fied. By using a similar procedure as above, we find

TX = U,

th = —Uy,

and so DX(TNZ") + Dy (Tzf) = 0. If we transfer the term from TNZX to TNZf
zero trivial conservation laws are derived.

Case 3: From Egs. (9), (11), and (12) as well as X3, the following
local conservation laws are constructed

4
C1t (UxWixxx — UxxWixx + UxxWx — Uxxx Wy

25
+c1 (u,z(wx + Ul Wiy — uuxxwx))
e

Ty =

(cltuxwxx — C1tUx Wy — UW — WEU;)

25
1 2
+5C2 (0 (Ut Wi — U3 W+ Ul W)+ e W+ U Wi — Ux W)
—tU Wil — BUWUy + UlWx — 202 Wiy — 2UWyok
+3UxWixx — 6Wllxxxx — AlxWix)
1
+§c1 (XUxxWx — BWllyy — AUWyy — XUxWyxx — 2EWUU; + UyWy)

+C2 (Usxx Wyt (Uxe Wixx —Ue Wixxx — Unxt Wx + Uxxxt Wx — Uxxxe W
—UUWxx + UlxWx — Ul W — UrUxWx — UrUxxW))

cw +1xwu 6cwu2 weu®
_z — R — _
g 1 Wixxxx 5 25 1 2
q
- 5C Wiy + Clt(uxth — UtWyx — uxxtw);
2

25

Tf—w<ct(u +2uu +4iu)
3 = 1 XXX 5 X 25

1
+C2t(§ uzux + Uxlyxx + Ulxxx + uxxxxx))
2 uw 2(:] w 1 Xwu
5 5¢, 500

A discussion as mentioned in the previous cases regarding the
above conservation laws can be stated.

3.2. KdV-CDG model and its solitons
To start, we apply a traveling wave transformation of the form

ux,t)y=U(), € =x—1t,

[m5G;June 24, 2022;9:16]
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where v represents the soliton speed. After employing the above
transformation, we find from Eq. (1)
—0U'(8) + 1 (U (8) + LU%(e))’
+02 (U3 () +U()U" () + UM () =0.

By integrating Eq. (13) w.r.t. ¢ and considering C as the constant
of integration, we get

(13)

W) +a (U”(s) + %Uz(s))
+cz<]l—5U3(8)+U(8)U”(e) +U<4>(s)) +C=0. (14)

3.2.1. Applying KM I

Based on the linear and nonlinear terms (U (g) and U3(¢)) in
Eq. (14), the balance number is acquired as

N+4=3N=N=2.

The above balance number and Eq. (7) suggest the following
finite series

U(e) = ap + a1K (&) + a;K?(¢), a; #0, (15)

as the solution of Eq. (14). By considering Eqs. (14) and (15) as
well as

K'(¢) = K(¢)(K(¢) — 1) In (a).

the following system of algebraic type is derived

1
—c1a3 —vag+C=0,

3
Caa
20+5

15

a1 (In (@))* + a1 (aocz + ¢1)(In (@))?

1 2
-0 (—gagcz — 5 0oC1 + v) =0,

7 2 1 4
120(—c2<@a1 - Ea2> - mcm)(ln (@)
1 1 1 2
+6<—€a1 (@ocy +¢1) + ga%cz - <§a1 - §az) (aocy + cl))

1 2
(30%02-{-3000%)(:2 + gd%Cl - (—gaocl + V)azzo,

) + C2(670 a2)> (In (a))4

ga)(ac+c)+1aca
32 0t2 1 6122

2 1
(lﬂ ((1)) + E

3 19
120(—c2<—ﬁa1 + o5
1 1
+6<—€a%c2 + <§a1
]a 2a )ca a;(aoCy + C )
(§1 3@ | 2(ApC2 + C1)

1 2
(ln (a))z + E(6(106[1 a, + a?)CZ + gﬂ] acq =0,

120(—cz<%a1 - %az> + cZ( f—oal + Eaz))(ln (@)

7 1
+6<77a1c2a2 + (§a1 -

ga)ca +ay(apCy + €
6 302020 2(AoCy +C1)

1 2 1
_(§a1 3a2>c2a2>(ln @) + — G (3a0a5 + 3a3az)c,
1
+§a§c1 =0,

120(—c2a2 +0 (;a *az>) (In (a))*

1 2 1
+6<<§a1—§az)cza2+a1cza2 - cza%) (In (a))z-s—gcza]a% =0,
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(b)

(c) (d)

Set 1
A Set 2
8 Set 3
6_
“
4-
u 2-
0_
-2
—4-
_6- T T T 1
-10 -5 0 5 10
X
Fig. 1. The first bright soliton for (a) Set 1, (b) Set 2, (c) Set 3, and (d) all sets when t = 0.
120¢,0, (In(a))* + 6c2a§ (In(a))? + 11—5c2a3 -0. Based on the above results, the following soliton to the KdV-
Applying a symbolic system like Maple yields the following so- ~ CDG model is derived
lutions for the above system:
Case 1:
5(In (a))ca+c 1
5(1n(0))%c; + €1 e t) = 2O 6oin (@)
== 20
%) 1+dd" 52 !
2
1
ar = 60(In(a))?, ~60(In (a))? D
_ 2 1
14+dd™ = °
a, = —60(In(a))?,
Case 2:
5(In(a))*c? — ¢
V= M7 a; = 30(In (a))z,

5¢;

_ (5(n(@)*cy+c) (10(n(@)*c3-5(In(@))*c; ¢ +¢2)
- 15¢3 ’

c
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a; = —30(In (a))?,

2
£0aoC1,

1 2
=0apC + 5

v = (In(a))*c; + (In (a))*aoc; + (In (a))?c; + s

2
C= {500+ 3

Based on the above results, the following soliton to the KdV-
CDG model is obtained

Uy (X, t) = ap + 30(In (a))*
1+d

ax— ((]n (a))4cz+(ln (a))Z agcy+(In (a))zcl +%a%cz+%aocl )t

—30(In (a))*

2
1
l+dax—((ln (a))4c2+(]n (a))zaocz+(ln (a))zcl +%a%62+%ﬂ061)r

To analyze the effect of nonlinear parameters (c; and ¢;) in the
dynamics of the first bright soliton, several numerical simulations
in two and three-dimensional postures are formally given. The fol-
lowing families

Set 1: {c; =04,c;=04,a=27,d =1},

Set 2: {c;=06,c0=04,a=2.7,d=1},

Set 3: {c;=04,c,=06,a=2.7,d=1}, have been taken to
plot Fig. 1.

3.2.2. Applying KM II
By considering Eqs. (14) and (15

(K () = K2(e) (1 — 4ABK2 (&),

the following nonlinear algebraic system is acquired

1
<AB - ﬁ‘h) <AB -

) as well as

L6((~120AB + 3a,)a? — 360(AB — 113a5)az (dg + 20))
~24(AB - 5a2)c10, = 0,
(— 1k + (~ 3% — §)az + AB(ao + 10))c
+¢1(AB - 55a;) =0,

%((3(10 +15)a? + 3a;(a3 + 200 + 80))c,
+35 azcl (12( 2(10C1+1) 4C1) 0,

(a + 5a0 + 5)cz + 2ao¢; — 5+ 5¢1 =0,

1 1,
c2a0 + =C1ap —

15 5

Employing a symbolic system like Maple results in the follow-
ing solutions for the above system:

vag+C=0.

Case 1:
a =0,
a, = 120AB,
1, 2
V= gaocz + gaoq + 4agc, + 4c1 + 16¢,,

C= ]5 c2a0 + 5c1a0 +4aocz +4agcq + 16apcy.
Based on the above results, the following soliton to the KdV-
CDG model is derived

uz(x,t)

1c1a(2) +ag(In (a))*c; + (In (@))?adc, + ap(In (a))’c;.

[m5G;June 24, 2022;9:16]
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Case 2:
¢1 + 20c
g = 1T
()
a; =0,
a, = 240AB,
3 —80c3
V= ——F77+,
5¢;
c— (c1+20c)) (c2 - 206162+160c2)

153
Based on the above results, the following soliton to the KdV-
CDG model is derived

Ug(x,t) = —

1
2 5002 2 5002
c%—80c: c£—80c:

(Afs)sinh<x+(%)r)ﬂmmcosh <x+<5¥622)t>

Several two and three-dimensional representations are formally
given to investigate the effect of nonlinear parameters (c; and c;)
in the dynamics of the fourth bright soliton. The following groups

Set 1: {A=1,B=2,¢; =0.01,¢c; = 0.01},

Set 2: {A=1,B=2,c; =0.04,c, =0.01},

Set 3: {A=1,B=2,c; =0.01, c; = 0.06}, have been adopted to
portray Fig. 2.

€1+20cy
)
2

+240AB

3.3. KdV-CDG model and its complexiton

To extract the complexiton of the KdV-CDG model, the follow-
ing assumptions are considered [36, 37]

W= 1 +ila,

V=V +ivy,

p(x, t) = Xt + c1x* + 5.

From
p(u,v)=0
p(,v)=0

and exerting a few operations, a nonlinear algebraic system is ac-
quired as follows

6Ca 143 2 + 4(—5C2143 + 1) a3 +
+u2v1 =0,

(6c243 — 4c1 3 + v2)

a8 + (=15c243 + ¢1) i + (15c2145 — 6c11a3) i + pea vy
+(—Cai3 + 143 — v2) a2 = 0.
Applying a symbolic system like Maple yields

v = = (Capt] — 106243 U3 + 56243 + 1t} — 3c143),

vy = =50 o + 100,03 143 — o3 — 3cipd e + c1 43

2
(A— B)smh( (5a062+ aocl+4aoc2+4cl+16£2> )+(A+B)cosh (x—(%agcrr%uoc] +4uoc2+4c1+]6c2)t)) '

=ag+ 120AB( 1
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30_ Set 3
20+
v 107
0_
- 10_
_20.
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X

Fig. 2. The fourth bright soliton for (a) Set 1, (b) Set 2, (c) Set 3, and (d) all sets when t = 0.

Through the command

_ PQipa, 2iv;)
pQ2ua.2v1)

the phase shift is found as

app =

a2
—64cy ug+1651 u‘zi —4py (—5c2 /L‘ll/iz +10cy

64cy u?

113 -cau3 3erudny ey #3)
+16¢q /J,‘]l —4;1% (52 //,‘11—10c2 u% u% +5¢y p,‘zl +cq p,% =31 p,%)

Now, the following complexiton to the KdV-CDG model is de-
rived

us(x,t) =30(In (f(x,£))) -
where

f(x,t) =1+ 2e” cos (¥,) + appe*™,

Y= uix+vt, i=1,2,
1= = (Gt — 106243 U3 + 562143 + 1t} — 3c143),

Vy = =50 2 + 10C T3 — Co 3 — 31y + €143,

—64ca u§+16¢1 g — 41y (=5cp 103 1o +10cy 2 i3 —co i3 -3¢y 2 po+¢1 13)
64c, u§+16¢; uF—4u3 (cyu—10cy 2 u3+5c, u3+c1 3 —3cq u3) ’
To analyze the effect of nonlinear parameters (c; and c;) in
the dynamics of the complexiton, several numerical simulations in
three-dimensional postures are formally given. The following fam-
ilies
Set 1: {/L] =05,u;=0.5,c0=0.01,¢; = 1},
Set 2: {[Jxl =0.5,uy,=0.5,¢; =0.06,¢;, = 1},

dpp = —
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(b)

Fig. 3. The complexiton for (a) Set 1, (b) Set 2, and (c) Set 3.

Set 3: {1 =0.5, uy =0.5,¢c; =0.01,c, =2}, have been taken
to plot Fig. 3.

4. Conclusion

In the current paper, the authors conducted a new and
complete investigation on the Korteweg-de Vries—Caudrey-Dodd-
Gibbon dynamical model describing certain properties of ocean dy-
namics. First, by adopting the Ibragimov method which is based
on the formal Lagrangian equation, the local conservation laws of
the KdV-CDG model were formally derived. Kudryashov and Hi-
rota methods were then applied to the KdV-CDG model to derive
its solitons and complexiton. Several numerical simulations in two
and three-dimensional postures were formally presented to exam-
ine the effect of nonlinear parameters in the dynamics of soliton
and complexiton solutions. It was observed that the change of non-
linear parameters has a significant effect on the dynamical evo-
lution of solitons and complexiton. As future works, the authors’
concern is to adopt other well-designed methods [38-50] to con-
struct other wave structures of the KdV-CDG model.
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